1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
3 years ago
9

Which of these is the BEST description of

Engineering
1 answer:
strojnjashka [21]3 years ago
3 0

Answer:

i would say C but i may be wrong have a great day

Explanation:

You might be interested in
TOPO NÀO CÓ CẤU HÌNH ĐA ĐIỂM
bixtya [17]

Answer:

Tout à fait les gens sont nuls

3 0
3 years ago
Read 2 more answers
A gasoline engine has a piston/cylinder with 0.1 kg air at 4 MPa, 1527◦C after combustion, and this is expanded in a polytropic
Roman55 [17]

Answer:

The expansion work is 71.24 kJ and heat transfer is -16.89 kJ

Explanation:

From ideal gas law,

Initial volume (V1) = nRT/P

n is the number of moles of air in the cylinder = mass/MW = 0.1/29 = 0.00345 kgmol

R is gas constant = 8314.34 J/kgmol.K

T is initial temperature = 1527 °C = 1527+273 = 1800 K

P is initial pressure = 4 MPa = 4×10^6 Pa

V1 = 0.00345×8314.34×1800/(4×10^6) = 0.013 m^3

V2 = 10×V1 = 10×0.013 = 0.13 m^3

The process is a polytropic expansion process

polytropic exponent (n) = 1.5

P2 = P1(V1/V2)^n = 4×10^6(0.013/0.13)^1.5 = 1.26×10^5 Pa

Expansion work = (P1V1 - P2V2) ÷ (n - 1) = (4×10^6 × 0.013 - 1.26×10^5 × 0.13) ÷ (1.5 - 1) = 35620 ÷ 0.5 = 71240 J = 71240/1000 = 71.24 kJ

Heat transfer = change in internal energy + expansion work

change in internal energy (∆U) = Cv(T2 - T1)

T2 = PV/nR = 1.26×10^5 × 0.13/0.00345×8314.34 = 571 K

Cv = 20.785 kJ/kgmol.K

∆U = 20.785(571 - 1800) = -25544.765 kJ/kgmol × 0.00345 kgmol = -88.13 kJ

Heat transfer = -88.13 + 71.24 = -16.89 kJ

5 0
3 years ago
Given below are the measured streamflows in cfs from a storm of 6-hour duration on a stream having a drainage area of 185 mi^2.
sertanlavr [38]

Answer:

33.56 ft^3/sec.in

Explanation:

Duration = 6 hours

drainage area = 185 mi^2

constant baseflow = 550 cfs

<u>Derive the unit hydrograph using the inverse procedure </u>

first step : calculate for the volume of direct runoff hydrograph using the details in table 2 attached below

Vdrh = sum of drh *  duration

        = 29700 * 6 hours ( 216000 secs )

        = 641,520,000 ft^3.

next step : Calculate the volume of runoff in equivalent depth

Vdrh / Area = 641,520,000  / 185 mi^2

                    = 1.49 in

Finally derive the unit hydrograph

Unit of hydrograph = drh /  volume of runoff in equivalent depth

                                = 50 ft^3 / 1.49 in  =  33.56 ft^3/sec.in

5 0
3 years ago
Explain how use of EGR is effective in reducing NOx emissions 4. In most locations throughout the U.S., the octane number of reg
TiliK225 [7]

Answer:please see attached file

Explanation:

3 0
3 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
3 years ago
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • Name two types of Transformers.
    6·1 answer
  • Air is compressed in the compressor of a turbojet engine. Air enters the compressor at 270 K and 58 kPa and exits the compressor
    13·1 answer
  • Which one of the following statements about the Wright brothers is not true?
    6·1 answer
  • The rate of energy transfer by work is called power. a)-True b)-False
    15·1 answer
  • In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0
    8·1 answer
  • What engine does the mercedes 500e have​
    5·1 answer
  • If most wildfires are suppressed (all fires are put out) for many years, how does the risk of wildfire in the area change in the
    10·1 answer
  • Which of the following describes a tropical grassland environment?
    6·2 answers
  • A building permit allows a builder to?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!