1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrej [43]
3 years ago
9

Which of these is the BEST description of

Engineering
1 answer:
strojnjashka [21]3 years ago
3 0

Answer:

i would say C but i may be wrong have a great day

Explanation:

You might be interested in
What is the maximum number of 12-2 with ground nonmetallic-sheathed cables permitted in an 18-cubic-inch device box if two singl
Novosadov [1.4K]

Answer:i think it is 35

Explanation:

i just guessed sorry im only in 5th grade

8 0
3 years ago
Read 2 more answers
Convert mechanical energy into electric energy. What can he use?
Nina [5.8K]

Answer:

<h2>Generator </h2>

Explanation:

A generator converts mechanical energy into electrical energy

7 0
4 years ago
The entire system of components that produces power and transmits it to the road is called the vehicle's _____.
IrinaK [193]

Answer:

Powertrain

Explanation:

6 0
3 years ago
A gas turbine operates with a regenerator and two stages of reheating and intercooling. Air enters this engine at 14 psia and 60
Rzqust [24]

Answer:

flow(m) = 7.941 lbm/s

Q_in = 90.5184 Btu/lbm

Q_out = 56.01856 Btu/lbm

Explanation:

Given:

- T_1 = 60 F = 520 R

- T_6 = 940 = 1400 R

- Heat ratio for air k = 1.4

- Compression ratio r = 3

- W_net,out = 1000 hp

Find:

mass flow rate of the air

rates of heat addition and rejection

Solution:

- Using ideal gas relation compute T_2, T_4, T_10:

                     T_2 = T_1 * r^(k-1/k)

                     T_2 = T_4 = T_10 = 520*3^(.4/1.4) = 711.744 R

- Using ideal gas relation compute T_7, T_5, T_9:

                     T_7 = T_6 * r^(-k-1/k)

                     T_7 = T_5 = T_9 = 1400*3^(-.4/1.4) = 1022.84 R

- The mass flow rate is obtained by:

                     flow(m) = W_net,out / 2*c_p*(1400-1022.84-711.744+520)

                     flow(m) = 1000*.7068 / 2*0.24*(1400-1022.84-711.744+520)

                     flow(m) = 7.941 lbm/s

- The heat input is as follows:

                     Q_in = c_p*(T_6 - T_5)

                     Q_in = 0.24*(1400 - 1022.84)

                     Q_in = 90.5184 Btu/lbm

- The heat output is as follows:

                     Q_out = c_p*(T_10 - T_1)

                     Q_out = 0.24*(711.744 - 520)

                    Q_out = 56.01856 Btu/lbm

                                           

                     

5 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
Other questions:
  • Passband to baseband conversion: Consider the following passband signal,
    14·1 answer
  • What are the two safety precautions taken before driving a car​
    12·1 answer
  • If you touch a downed power line, covered or bare, what's the likely outcome?
    8·2 answers
  • One kilogram of water contained in a piston–cylinder assembly, initially saturated vapor at 460 kPa, is condensed at constant pr
    15·1 answer
  • Under conditions for which the same roojm temperature is mainteined bt a heating or cooling system, it is not uncommon for a per
    10·1 answer
  • The purpose of the __________ algorithm is to enable two users to exchange a secret key securely that can then be used for subse
    8·1 answer
  • Digital leaders are people who __ others down a particular path.
    13·2 answers
  • 7. What is the voltage across a 100 ohm circuit element that draws a current of 1 A?
    11·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • A 1020 Cold-Drawn steel shaft is to transmit 20 hp while rotating at 1750 rpm. Calculate the transmitted torque in lbs. in. Igno
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!