To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. By definition is defined as:

Where,
= Wavelength
d = Width of the slit
= Angular resolution
Through the arc length we can find the radius, which would be given according to the length and angle previously described.
The radius of the beam on the moon is

Relacing 


Replacing with our values we have that,


Therefore the diameter of the beam on the moon is



Hence, the diameter of the beam when it reaches the moon is 7361.82m
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
Answer:
hshawi hdsdk
done and my name is fricking bella your gonna die
The Two examples of contact forces are:
- frictional force
- Contact force.
The two examples of non contact forces are:
- Gravitational force
- magnetic force.
Contact forces happens due to the contact between two objects
Non Contact forces happens because there is no contact between two objects. There is no attraction.
The formula is
F_grav = G * m1 * m2 / r^2
G m1 and m2 are going to stay the same once chosen no matter what the distance is. The only thing that will change is the distance.
As the distance increases, the Gravitational Force will decrease. It will decrease by quite a bit.
As the distance decreases, the gravitational force will Increase.
The relationship is inverse. The moon travelling around the earth is one example. The earth travelling around the sun is another.