Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m


Now


- Lower mass=Higher acceleration
- Lower Force=Lower Acceleration
Option B has lowest mass and highest force hence its correct
Answer:
Energy due to air resistance = 31.8 Joules
Explanation:
According to the law of conservation of energy, energy can neither be created nor destroyed but can be transformed from one form to another
Kinetic Energy + Energy due to air resistance = Potential energy..........(1)
If there is no energy loss due to air resistance, potential energy = kinetic energy
mass, m = 1.5 kg
height, h = 4.0 m
speed, v = 6 m/s
Kinetic energy = 0.5 mv²
Kinetic energy = 0.5 * 1.5 * 6²
Kinetic energy = 27 Joules
Potential Energy = mgh
Potential energy = 1.5 * 9.8 * 4
Potential energy = 58.8 Joules
From equation (1)
27 + Energy due to air resistance = 58.8
Energy due to air resistance = 58.8 - 27
Energy due to air resistance = 31.8 Joules
Answer:
amplitude
Explanation:
sound travel and it amplifies