1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
3 years ago
8

A parallel-plate capacitor has an area of

Physics
1 answer:
nikdorinn [45]3 years ago
6 0

Answer: what

Explanation:

You might be interested in
A 0.473 kg ice puck, moving east with a speed of 2.76 m/s, has a head-on collision with a 0.819 kg puck initially at rest. Assum
Gekata [30.6K]

Answer:

The final speed of puck 1 is 0.739 m/s towards west  and puck 2 is 2.02 m/s towards east .

Explanation:

Let us consider east as positive direction and west as negative direction .

Given

mass of puck 1 , m_1= 0.473 kg

mass of puck 2 , m_2= 0.819 kg

initial speed of puck 1 , u_1=2.76\frac{m}{s}

initial speed of puck 2 , u_2=0.00\frac{m}{s}

Final speed of puck 1 and puck 2 be v_1\, and\, v_2  respectively

Apply conservation of linear momentum

m_1u_1+m_2u_2=m_1v_1+m_2v_2

=>0.473\times 2.76+0.0=0.473\times v_1+0.819\times v_2

=>1.594=0.5775\times v_1+ v_2 -----(A)

Since collision is perfectly elastic , coefficient restitution e=1

u_2-u_1=v_1-v_2

=>0-2.76=v_1-v_2 ------(B)

From equation (A) and (B)

v_1=-0.739\frac{m}{s}

and v_2=2.02\frac{m}{s}

Thus the final speed of puck 1 is 0.739 m/s towards west  and puck 2 is 2.02 m/s towards east .

       

3 0
3 years ago
A load of 54 N attached to a spring that ishanging vertically stretches the spring 0.15 m.What is the spring constant?Answer in
beks73 [17]

Answer:

300 N/m

Explanation:

given,

Load attached to the spring, W = 54 N

length of stretch of the spring, x = 0.15 m

spring constant= ?

Force applied on the spring is calculated by the equation

F = k x

where k is the spring constant

x is the displacement of the spring due to applied load

now,

54 = k × 0.15

k = \dfrac{54}{0.15}

k =300\ N/m

hence, the spring constant is equal to 300 N/m

8 0
3 years ago
Read 2 more answers
A closed container initially holds 50 monatomic Aparticles that have a combined energy of 480 units. After 100 monatomic B parti
Molodets [167]

Answer:

"8 units" is the appropriate answer.

Explanation:

According to the question,

Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.

Now,

The total energy will be:

= 480+720

= 1200 \ units

The total number of particles will be:

= 50+100

= 150

hence,

Energy of each A particle or each B particle will be:

= \frac{1200}{150}

= 8 \ units

5 0
3 years ago
Why is the scientific method described as cyclic?
Troyanec [42]
Because the scientific method can go around in a circle as many times as neccisary to get the results you need
8 0
3 years ago
A camera with a 50.0-mm focal length lens is being used to photograph a person standing 3.00 m away. (a) How far from the lens m
kirill [66]

a) 50.8 mm

b) The whole image (1:1)

c) It seems reasonable

Explanation:

a)

To project the image on the film, the distance of the film from the lens must be equal to the distance of the image from the lens. This can be found by using the lens equation:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where

f is the focal length of the lens

p is the distance of the object from the lens

q is the distance of the image from the lens

In this problem:

f = 50.0 mm = 0.050 m is the focal length (positive for a convex lens)

p = 3.00 m is the distance of the person from the lens

Therefore, we can find q:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{0.050}-\frac{1}{3.00}=19.667m^{-1}\\q=\frac{1}{19.667}=0.051 m=50.8 mm

b)

Here we need to find the height of the image first.

This can be done by using the magnification equation:

\frac{y'}{y}=-\frac{q}{p}

where:

y' is the height of the image

y = 1.75 m is the height of the real person

q = 50.8 mm = 0.0508 m is the distance of the image from the lens

p = 3.00 m is the distance of the person from the lens

Solving for y', we find:

y'=-\frac{qy}{p}=-\frac{(0.0508)(1.75)}{3.00}=-0.0296 m=-29.6mm

(the negative sign means the image is inverted)

Therefore, the size of the image (29.6 mm) is smaller than the size of the film (36.0 mm), so the whole image can fit into the film.

c)

This seems reasonable: in fact, with a 50.0 mm focal length, if we try to take the picture of a person at a distance of 3.00 m, we are able to capture the whole image of the person in the photo.

3 0
3 years ago
Other questions:
  • Building a new highway destroys habitats and can lead to soil erosion
    12·2 answers
  • 7. Plasma from blood (density = 1025 kg/m3) flows along a vertical channel in a steady, incompressible, fully developed laminar
    14·1 answer
  • How strongly the planet you're on Pulls on you
    6·2 answers
  • The unit of work is what
    6·1 answer
  • Determine the gravitational force of attraction between the Earth and the Sun given the mass of the earth is 6 x 10^24 kg, the m
    13·1 answer
  • 12–139. Cars move around the “traffic circle” which is in the shape of an ellipse. If the speed limit is posted at 60 km>h, d
    11·1 answer
  • A square loop of side length a =4.5 cm is placed a distance b = 1.1 cm from a long wire carrying a current that varies with time
    11·2 answers
  • a quantity of n2 gas originally held at 4.75 atm pressure in a 1.00-L container at 26c is transerred to a 10.0-L container at 20
    15·2 answers
  • An object has an angular velocity of 1.0 rad and an angular acceleration of 0.5 rad/s. Is the speed of its rotation increasing o
    15·1 answer
  • Does the cars mass alone determine whether the egg breaks?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!