To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
X men those mutants are amazing
Answer:
a) 5.5×10^17 Hz
b) visible light
Explanation:
Since the wavelength of the electromagnetic radiation must be about the size of the about itself, this implies that;
λ= 5.5 × 10^-10 m
Since;
c= λ f and c= 3×10^8 ms-1
f= c/λ
f= 3×10^8/5.5 × 10^-10
f= 5.5×10^17 Hz
The electromagnetic wave is visible light
Answer:
The thickness is 
Explanation:
From the question we are told that
The wavelength is 
The first order of the dark fringe is 
The second order of dark fringe considered is 
Generally the condition for destructive interference is mathematically represented as

Here y is the path difference between the central maxima(i.e the origin) and any dark fringe
So the path difference between the 16th dark fringe and the 6th dark fringe is mathematically represented as

=> 
=> 
=> 
Answer:
The maximum height the pebble reaches is approximately;
A. 6.4 m
Explanation:
The question is with regards to projectile motion of an object
The given parameters are;
The initial velocity of the pebble, u = 19 m/s
The angle the projectile path of the pebble makes with the horizontal, θ = 36°
The maximum height of a projectile,
, is given by the following equation;

Therefore, substituting the known values for the pebble, we have;

Therefore, the maximum height of the pebble projectile,
≈ 6.4 m.