Answer:
983.400345675 hits per second
Explanation:
Radius = 14.2 cm
Record turn rate = 33 rev/min
Bump separation = 0.499 mm
Circumference of the record = 
Number of bumps in the groove = 
The rate which the bumps hit the stylus = 
The rate at which the bumps hit the stylus 983.400345675 hits per second
To solve this problem we will apply the concept of rotational kinetic energy. Once this energy is found we will proceed to find the time from the definition of the power, which indicates the change of energy over time. Let's start with the kinetic energy of the rotating flywheel is

Here
I = moment of inertia
Angular velocity
Here we have that,


Replacing the value of the moment of inertia for this object we have,



The expression for average power is




Therefore the correct answer is 620s.
Answer:
9000RPM
Explanation:
"Angular velocity" is directly related to kinetic energy, that is, the Kinetic energy equation would allow an approximation to the resolution investigated in the problem.
The equation for KE is given by:

Now, starting from there towards the <em>Angular equation of kinetic energy</em>, the moment of inertia (i) is used instead of mass (m), and angular velocity (w) instead of linear velocity (V)
That's how we get

calculating the inertia for a solid cylindrical disk, of
m = 400kg
r = 1.2 / 2 = 0.6m

We understand that the total kinetic energy is 3.2 * 10 ^ 7J, like this:



Thus,
943 rad / s ≈ 9000 rpm
Answer:
The correct answer is B.
The astronaut will know due to the light from the explosion.
Explanation:
Sound and vibrations require a medium such as air to travel through. Space, there is no air. Only a vacuum. So sound and vibrations are unable to travel. Light requires no medium to travel. It can go through a vacuum.
Therefore the Astronaut will see a bright flash of light as it travels from the explosion to outer space. It is also important to note that light can travel very far because nothing else interacts with its wave particles and as such, it cannot be impeded.
Cheers!
That have a high mass and low volume I think