They begin to adapt into their new location. They then end up having adaptations to help them survive.
Explanation:
so sorry
don't know but please mark me as brainliest please
Answer:
Acceleration = 10.06 m/s²
Explanation:
1 mile = 1.6093km
1609.3m = 1 mile
1 m =
mile
50.0 miles/hour =
m/s
= 22.35m/s
from equation
S = Ut + 1/2 at²
v = U + at
22.35 = 0 + a * 2.22
a = 22.35 ÷ 2.22
= 10.06 m/s²
According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s
To solve the problem it is necessary to apply the concepts related to the voltage in a coil, through the percentage relationship that exists between the voltage and the number of turns it has.
So things our data are given by



PART A) Since it is a system in equilibrium the relationship between the two transformers would be given by

So the voltage for transformer 2 would be given by,

PART B) To express the number value we proceed to replace with the previously given values, that is to say


