Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
Answer:
D) The equilibrium lies far to the left
Explanation:
According to the law of mass action, the equilibrium constant K for the reaction at 373K can be calculated as follows:
K =
= 2.19×10^{-10}
([X] means = concentration of X)
This means that in the equilibrium the concentration of the reactant (that is in the denominator) will be much higher (around 10^{10} fold) than the concentrations of the products (that are in the numerator), and this means that the equilibrium lies far to the left (to the reactants side) as very small amount of product is being formed.
Answer:
Explanation:
It can be determined by measuring the Ph. D is incorrect.
C: is wrong because if you are making something acidic, you are increasing the H+
B: is the correct answer.
A: pH decreases. H+ increases which makes the Ph decrease. It is an oddity of the formula that makes this happen.
Answer:
I say for her to test her suspicion by going to see an allergist to diagnose the allergy.