Answer:
true
Explanation:
dbgkdodocofkci ifkdcl k kfododocp v
Answer:
x(t) = -8sin2t
Explanation:
See the attachment for solution
From my solving, we can deduce that w² = 4, and thus, w = 2
Therefore, the general solution is
x(t) = c1 cos2t + c2 sin2t
Considering the final variable, we can conclude that
x(0) = 0
x'(0) = -8 m/s
The final solution, thus
x(t) = -8sin2t
Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:

here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:


Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.