Answer:
D all of the above
Explanation:
electricity moves easily through all of them and none of them prevent the flow of electricity
The lights are wired in PARALLEL.
In fact, when the lights are connected in parallel, they are connected on separate branches to the source of voltage, so if one light bulb burns out, the other lights continue to work because the current continues to flow in the other branches of the circuit.
Vice-versa, if the light bulbs are connected in series, they are on the same branch This means that if one of them burns out, the circuit is open in that point, so the current cannot flow anymore and the other light bulbs turn off as well.
Potential energy = (weight) x (height)
After the car has been raised 2.5 meters, it has
(11,000) x (2.5) = 27,500 Joules
MORE potential energy than it had before it was lifted.
That's the energy that has to come from the work you do to lift it.
Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least 27,500 joules</em>.
The change in temperature here corresponds to a sensible heat. The amount of energy required can be calculated by multiplying the specific heat capacity, the amount of the substance and the corresponding change in temperature.
Heat required = mCΔT
Heat required = 0.368 kg (0.0920 cal/g°C) (60 - 23)°C
Heat required = 1.25 cal
Answer:
50 lb
Explanation:
Given,
The weight of astronaut's life support backpack on Earth (w) = 300 lb
Acceleration due to gravity on Earth (g) = 9.8 m/s²
Acceleration due to gravity on Moon = g'

We know that weight of an object on Earth is,


Similarly, weight on Moon will be




Thus the astronaut's life support backpack will weigh 50 lb on Moon.