<u>Answer:</u> The temperature to which the gas in the syringe must be heated is 720.5 K
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:
where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
We are given:
Putting values in above equation, we get:
Hence, the temperature to which the gas in the syringe must be heated is 720.5 K
Answer:
g NaCl = 424.623 g
Explanation:
<em>C</em> NaCl = 3.140 m = 3.140 mol NaCl / Kg solvent
∴ solvent: H2O
∴ mass H2O = 2.314 Kg
mol NaCl:
⇒ mol NaCl = (3.140 mol NaCl/Kg H2O)×(2.314 Kg H2O) = 7.266 mol NaCl
∴ mm NaCl = 58.44 g/mol
⇒ g NaCl = (7.266 mol NaCl)×(58.44 g/mol) = 424.623 g NaCl
The composition would be more "diluted" in a sense.
Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.