The answer is divergent boundaries.
I hope this helps you!
Answer:
5 m/s2
Explanation:
The total acceleration of the circular motion is made of 2 components: centripetal acceleration and linear acceleration of 4 m/s2. They are perpendicular to each other.
The centripetal acceleration is the ratio of instant velocity squared and the radius of the circle

So the magnitude of the total acceleration is

(a) The momentum of the proton is determined as 5.17 x 10⁻¹⁸ kgm/s.
(b) The speed of the proton is determined as 3.1 x 10⁹ m/s.
<h3>
Momentum of the proton</h3>
The momentum of the proton is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
- v is speed of the proton = ?
<h3>Speed of the proton</h3>
v² = 2K.E/m
v² = (2 x 50 x 10⁹ x 1.602 x 10⁻¹⁹ J)/(1.67 x 10⁻²⁷)
v² = 9.6 x 10¹⁸
v = 3.1 x 10⁹ m/s
<h3>Momentum of the proton</h3>
P = mv = (1.67 x10⁻²⁷ x 3.1 x 10⁹) = 5.17 x 10⁻¹⁸ kgm/s
Learn more about momentum here: brainly.com/question/7538238
#SPJ4
First let's convert the time in seconds:

The current is defined as the quantity of charge flowing through a certain section of a circuit per unit of time:

Using I=10 A, and

, we can find the amount of charge flown through the hair dryer in this time:

The charge of a single electron is

, so the number of electrons flown through the hair dryer is the total charge divided by the charge of a single electron:
Answer:
Explanation:
Time taken to complete one revolution is called time period.
So, Time period, T = 1 s
Diameter = 1.6 mm
radius, r = 0.8 mm
Let the angular speed is ω.
The relation between angular velocity and the time period is

ω = 2 x 3.14 = 6.28 rad/s
The relation between the linear velocity and the angular velocity is
v = r x ω
v = 0.8 x 10^-3 x 6.28
v = 0.005 m/s