1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
2 years ago
11

The Michelson-Morley experiment a) confirmed that time dilation occurs. b) proved that length contraction occurs. c) verified th

e conservation of momentum in inertial reference frames. d) supported the relationship between mass and energy. e) indicated that the speed of light is the same in all inertial reference frames.
Physics
1 answer:
hram777 [196]2 years ago
5 0

Answer:

e) indicated that the speed of light is the same in all inertial reference frames.

Explanation:

In 18th century, many scientists believed that the light just like air and water needs a medium to travel. They called this medium <em>aether</em>. They believed that even the space is not empty and filled with aether.

Michelson and Morley tried to prove the presence and speed of this aether through an interference experiment in 1887. They made an interferometer in which light was emitted at various angles with respect to the supposed aether. Both along the flow and against the flow to see the difference in the speed of light. But they did not find no major difference and thus it became the first proof to disprove the theory of aether.

It thus proved that the speed of light remains same in all inertial frames.

Also, it became a base for the special theory of relativity by Einstein.

You might be interested in
Two identical conducting spheres, A and B, carry equal charge. They are stationary and are separated by a distance much larger t
podryga [215]

Answer:

8F_i = 3F_f

Explanation:

When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.

Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.

Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.

The electrostatic force, Fi, in the initial configuration can be calculated as follows.

F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f

7 0
3 years ago
The ability of your joints and muscles to move in their full range of motion is called
Studentka2010 [4]

Answer:

Dynamic flexibility

Explanation:

Dynamic flexibility can be generally defined as the ability of the body muscles and joints to move in full range of motion. High flexibility in these joints and muscles leads to the decreasing pain and injury in different parts of the body.

Proper warm up exercises are needed to be carried out that involves both the combination of controlling movements and stretching of the body, and this directly enhances the dynamic flexibility of the body.

The athletes and sports persons possesses a good dynamic flexibility of their body as they carry our different types of body exercises.

6 0
2 years ago
"What is the magnifying power of an astronomical telescope using a reflecting mirror whose radius of curvature is 5.9 m and an e
notka56 [123]

Answer:

The Magnifying power of a telescope is M = 109.26

Explanation:

Radius of curvature R = 5.9 m = 590 cm

focal length of objective f_{objective} = \frac{R}{2}

⇒ f_{objective} = \frac{590}{2}

⇒ f_{objective} = 295 cm

Focal length of eyepiece f_{eyepiece} = 2.7 cm

Magnifying power of a telescope is given by,

M = \frac{f_{objective} }{f_{eyepiece} }

M = \frac{295}{2.7}

M = 109.26

therefore the Magnifying power of a telescope is M = 109.26

4 0
3 years ago
Please help, I do not understand
Anettt [7]
I think the key here is to be exquisitely careful at all times, and
any time we make any move, keep our units with it.

We're given two angular speeds, and we need to solve for a time.

Outer (slower) planet:
Angular speed =  ω  rad/sec
Time per unit angle =  (1/ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/ω sec/rad) · (2π rad) = 2π/ω seconds .

Inner (faster) planet:
Angular speed =  2ω  rad/sec
Time per unit angle =  (1/2ω)  sec/rad
Angle per revolution = 2π rad
Time per revolution = (1/2ω sec/rad) · (2π rad) = 2π/2ω sec = π/ω seconds.

So far so good.  We have the outer planet taking 2π/ω seconds for one
complete revolution, and the inner planet doing it in only π/ω seconds ...
half the time for double the angular speed.  Perfect !

At this point, I know what I'm thinking, but it's hard to explain.
I'm pretty sure that the planets are in line on the same side whenever the
total elapsed time is something like a common multiple of their periods.
What I mean is:

They're in line, SOMEwhere on the circles, when

     (a fraction of one orbit) = (the same fraction of the other orbit)    
AND
     the total elapsed time is a common multiple of their periods.

Wait !  Ignore all of that.  I'm doing a good job of confusing myself, and
probably you too.  It may be simpler than that.  (I hope so.)  Throw away
those last few paragraphs.

The planets are in line again as soon as the faster one has 'lapped'
the slower one ... gone around one more time.  
So, however many of the longer period have passed, ONE MORE
of the shorter period have passed.  We're just looking for the Least
Common Multiple of the two periods.

      K (2π/ω seconds)  =  (K+1) (π/ω seconds)

                     2Kπ/ω   =    Kπ/ω + π/ω

Subtract  Kπ/ω :    Kπ/ω = π/ω

Multiply by  ω/π :      K  =  1

(Now I have a feeling that I have just finished re-inventing the wheel.)

And there we have it:

     In the time it takes the slower planet to revolve once,
     the faster planet revolves twice, and catches up with it.
    
     It will be  2π/ω  seconds before the planets line up again.
    
     When they do, they are again in the same position as shown
     in the drawing.

To describe it another way . . . 

     When Kanye has completed its first revolution ...

     Bieber has made it halfway around.

     Bieber is crawling the rest of the way to the starting point while ...

     Kanye is doing another complete revolution.

     Kanye laps Bieber just as they both reach the starting point ...

     Bieber for the first time, Kanye for the second time.


You're welcome.  The generous bounty of 5 points is very gracious,
and is appreciated.  The warm cloudy water and green breadcrust
are also delicious.
5 0
2 years ago
A pebble is thrown into the air with a velocity of 19/m at an angle of 36 with respect to the horizontal.
kow [346]

Answer:

The maximum height the pebble reaches is approximately;

A. 6.4 m

Explanation:

The question is with regards to projectile motion of an object

The given parameters are;

The initial velocity of the pebble, u = 19 m/s

The angle the projectile path of the pebble makes with the horizontal, θ = 36°

The maximum height of a projectile, h_{max}, is given by the following equation;

h_{max} = \dfrac{\left (u \times sin(\theta) \right)^2}{2 \cdot g}

Therefore, substituting the known values for the pebble, we have;

h_{max} = \dfrac{\left (19 \times sin(36 ^{\circ}) \right)^2}{2 \times 9.8} = 6.3633894140470403035477570509439

Therefore, the maximum height of the pebble projectile, h_{max} ≈ 6.4 m.

3 0
3 years ago
Other questions:
  • Plz help me I will mark brainlieat Ques. Write down name and molecular formula of a
    10·1 answer
  • How does the suns energy contribute to the carbon cycle
    15·1 answer
  • When a water wave runs into you at the beach, what causes you to get knocked down?
    9·1 answer
  • Dana has a sports medal suspended by a long ribbon from her rearview mirror. As she accelerates onto the highway, she notices th
    6·1 answer
  • 6. The four main systems of the Earth are
    8·2 answers
  • The ball's gravitational potential energy as a function of its height after release. The ball's kinetic energy as a function of
    7·1 answer
  • Each of the boxes starts at rest and is then pulled for 2.0 m across a level, frictionless floor by a rope with the noted force.
    13·1 answer
  • Use a variation model to solve for the unknown value. Use as the constant of variation. The stopping distance of a car is direct
    8·1 answer
  • The filament is broken in a light bulb. The circuit is now
    12·1 answer
  • Do transistors amplfy a.c or d.c<br>​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!