To determine strength of attractive forces between the molecules the size of the molecules, their polarity (dipole moment), and their shape. ... If two molecules have about the same size and similar shape, the dipole-dipole intermolecular attractive force increases with increasing polarity.
Answer: With the exception of hydrogen, all atoms have three main parts. The parts of an atom are protons, electrons, and neutrons. A proton is positively charged and is located in the center or nucleus of the atom. Electrons are negatively charged and are located in rings or orbits spinning around the nucleus.
Explanation:
Answer:
I = 1.23 A
Explanation:
Given that,
The resistance of the lightbulb, R = 96.8 Ω
Voltage, V = 120 V
We need to find the current flows through the lightbulb. Let the current be I. We can use the ohm's law to find it i.e.

So, the current flows through the bulb is 1.23 A.
Answer:
162 g Fe₂O₃
Explanation:
To find the mass of Fe₂O₃, you need to (1) convert grams C to moles C (via molar mass from periodic table), then (2) convert moles C to moles Fe₂O₃ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe₂O₃ to grams (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (C): 12.011 g/mol
2 Fe₂O₃(s) + 3 C(s) ---> 4 Fe(s) + 3 CO₂(g)
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
18.3 g C 1 mole 2 moles Fe₂O₃ 159.684 g
-------------- x ---------------- x ------------------------- x ----------------- = 162 g Fe₂O₃
12.011 g 3 moles C 1 mole
Answer:
1.70
Explanation:
The molar mass of perchloric acid is 100.46 g/mol. The moles corresponding to 484 mg (0.484 g) are:
0.484 g × (1 mol/100.46 g) = 4.82 × 10⁻³ mol
4.82 × 10⁻³ moles are dissolved in 240 mL (0.240 L) of solution. The molar concentration of perchloric acid is:
4.82 × 10⁻³ mol/0.240 L = 0.0201 M
Perchloric acid is a strong monoprotic acid, that is, it dissociates completely, so [H⁺] = 0.0201 M.
The pH is:
pH = -log [H⁺] = -log 0.0201 = 1.70