Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.
Formula for calculation of neutrons is Mass number - atomic number, here values are given. By putting values in formula 76-35= 41. Number of neutrons 41
Answer:
590J or 590.4J :)
Explanation:
2.46 x 6 (35-29= 6) x 40 = 590.4J
Nearest whole number : 590J
Answer:
C) The most efficient fusion reactors would use heavier forms of hydrogen.
Explanation:
From the information presented to us in the question, the third sentence reveals that heavier forms of hydrogen produces larger amount of energy and most importantly reacts more efficiently when fusion occurs.
<em>In fact, the </em><u><em>heavy isotopes of hydrogen—deuterium and tritium—react more efficiently</em></u><em> with each other, and, when they do undergo fusion, they yield more energy per reaction than do two hydrogen nuclei. </em>