Answer:
total current = 12.417 A
so it will not fuse as current is less than 15 A
Explanation:
given data
toaster = 1140-W
blender = 270-W
lamp = 80-W
voltage = 120 V
solution
we know that current is express as
current = power ÷ voltage ......................1
here voltage is same in all three device
so
current by toaster is
I = 
I = 9.5 A
and
current by blender
I = 
I = 2.25 A
and
current by lamp is
I = 
I = 0.667 A
so here device in parallel so
total current is = 9.5 A + 2.25 A + 0.667 A
total current = 12.417 A
so it will not fuse as current is less than 15 A
Answer:
a) t=1s
y = 10.1m
v=5.2m/s
b) t=1.5s
y =11.475 m
v=0.3m/s
c) t=2s
y =10.4 m
v=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Explanation:
Conceptual analysis
We apply the free fall formula for position (y) and speed (v) at any time (t).
As gravity opposes movement the sign in the equations is negative.:
y = vi*t - ½ g*t2 Equation 1
v=vit-g*t Equation 2
y: The vertical distance the ball moves at time t
vi: Initial speed
g= acceleration due to gravity
v= Speed the ball moves at time t
Known information
We know the following data:
Vi=15 m / s

t=1s ,1.5s,2s
Development of problem
We replace t in the equations (1) and (2)
a) t=1s
=15-4.9=10.1m
v=15-9.8*1 =15-9.8 =5.2m/s
b) t=1.5s
=22.5-11.025=11.475 m
v=15-9.8*1.5 =15-14.7=0.3m/s
c) t=2s
= 30-19.6=10.4 m
v=15-9.8*2 =15-19.6=-4.6m/s (The minus sign (-) indicates that the ball is already going down)
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
This question can have ALOT of answers but ill leave you with these summed up points and you can take what you need from it they are get right to the point! Sorry if they long paragraphs scare you lol
*You want to provide patients the best care possible. Most often your patients will have a disease. Diseases result when there is something abnormal in the anatomy and physiology of a structure. With a car, you can’t understand how to fix an engine if you don’t know how it works. The same is true with your patients. You can’t really understand how to treat them or why the treatment works, if you don’t understand how the effected body system normally functions.
*Patients will want to understand their diseases. In order to help them understand what is going wrong, you have to first understand how a particular organ is supposed to work. In addition, you will need to be able to explain these things to patients in a way that they can understand. If you don’t understand it well, you won’t be able to explain it. Your patient’s confidence in your ability will be at least partially determined by your ability to discuss what you are doing and why you are doing it. You will need to look up information if you are not sure.
*Organ systems are so interconnected that a disease in one system may result in a symptom in another system. Without seeing the normal interconnectedness, you cannot fully understand the disease.
*Success in an allied health field requires at least three things. First, you must have the personality to be able to support and help patients. Secondly, you must have the scientific and technical knowledge necessary to make the correct decisions regarding patient care. Thirdly, you must have the clinical skills necessary to implement this kno
Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.