Answer:
84.8 mL
Explanation:
From the question given above, the following data were obtained:
Mass of CuNO₃ = 3.53 g
Molarity of CuNO₃ = 0.330 M
Volume of solution =?
Next, we shall determine the number of mole in 3.53 g of CuNO₃. This can be obtained as follow:
Mass of CuNO₃ = 3.53 g
Molar mass of CuNO₃ = 63.5 + 14 + (16×3)
= 63.5 + 14 + 48
= 125.5 g/mol
Mole of CuNO₃ =?
Mole = mass / Molar mass
Mole of CuNO₃ = 3.53 / 125.5
Mole of CuNO₃ = 0.028 moles
Next, we shall determine the volume of the solution. This can be obtained as follow:
Molarity of CuNO₃ = 0.330 M
Mole of CuNO₃ = 0.028 moles
Volume of solution =?
Molarity = mole /Volume
0.330 = 0.028 / Volume
Cross multiply
0.330 × Volume = 0.028
Divide both side by 0.330
Volume = 0.028 / 0.330
Volume = 0.0848 L
Finally, we shall convert 0.0848 L to millilitres (mL). This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.0848 L = 0.0848 L × 1000 mL / 1 L
0.0848 L = 84.8 mL
Therefore, the volume of the solution is 84.8 mL.
Answer:
See the attached image
Explanation:
The first step is the production of the <u>carboanion</u> in the
compound. We will get the <u>negative charge</u> on the methyl group and the <u>positive charge</u> in the Li atom.
Then the carboanion can <u>attack the acetone</u>. The double bond of the oxo group would <u>delocalized</u> upon the oxygen, generating a positive charge in the carbon that can be attacked by the carboanion formaiting a <u>new C-C bond</u>.
The balanced chemical equation for the standard formation reaction of liquid acetic acid is given as ,
→ 
The reaction that form the products from their elements in their standard state is called formation of reaction .The acetic acid consist C , H , and O , So, determine their standard state . Carbon is graphite at 25°C and 1 atm , whereas hydrogen and oxygen are diatomic gases . Hence , we start with unbalanced reaction.
→ 
The balanced chemical equation for the standard formation reaction of liquid acetic acid as,
→ 
The combustion of liquid acetic acid is given as,
→
ΔH =-873
learn more about balancing chemical equation
brainly.com/question/15052184
#SPJ4
Answer:- C. 16.4 L
Solution:- The given balanced equation is:

From this equation, there is 2:1 mol ratio between HCl and hydrogen gas. First of all we calculate the moles of hydrogen gas from given grams of HCl using stoichiometry and then the volume of hydrogen gas could be calculated using ideal gas law equation, PV = nRT.
Molar mass of HCl = 1.008 + 35.45 = 36.458 gram per mol
The calculations are shown below:

= 
Now we will use ideal gas equation to calculate the volume.
n = 0.672 mol
T = 25 + 273 = 298 K
P = 101.3 kPa = 1 atm
R = 
PV = nRT
1(V) = (0.672)(0.0821)(298)
V = 16.4 L
From calculations, 16.4 L of hydrogen gas are formed and so the correct choice is C.