<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
Density = mass/volume
Density = 81g/0.9cm³
Density = 90g/cm³
: )
Answer:
The balanced chemical equation: 2 Al + 3Cl2→ 2 AlCl3
Mole-mole relationship: 2 moles Al + 3 moles Cl2→ 2 moles AlCl3
Given: 0.600 moleCl2; 0.500 mole Al
Required: Excess reactant___; Number of moles of AlCl3 produced__
Solution: Use dimensional analysis using the mole-mole rel
0.600 mole Cl2 * 2 moles Al/3 moles Cl2 = 0.4 mole Al
0.5 mole Al* 3 moles Cl2/2 moles Al = 0.75 mole Cl2
Based on the given:
0.6mole Cl2 + 0.4 mole Al ( this is possible based on the given)
0.5mole Al + 0.75 mole Cl2 (this is not possible because the given is only 0.600 mole of Cl 2)
Answer: Excess reactant is Al; Limiting reactant is Cl2
The amount of AlCl3 produced = 0.6 mole Cl2 + 0.4 mole Al = 1.0 mole AlCl3
I don't know if it is organized by reactivity
it is organized by families
it is organized by atomic number
it is NOT organized by atomic mass
it is organized by periods and groups
Answer: The atomic radius of a hydrogen atom is 742=37 pm 74 2 = 37 pm .
Explanation: