Answer:
D atom
Explanation:
The smallest particle of a substance that retains the chemical and physical properties of the substance and is composed of two or more atoms
H₂SO₃ is weaker acid than H₂SO₄.
The bonding power of an acid is typically influenced by the size of the "SO₄" atom; the smaller the "SO₄" atom, the stronger the H-A bond. The atoms get larger and the bonds get weaker as you proceed down a row in the Periodic Table, strengthening the acids.
<h3>Describe acid.</h3>
The term "acid" refers to any molecule or ion that can donate a proton (a Brnsted-Lowry acid) or establish a covalent bond with an electron pair (a Lewis acid). The first class of acids is the proton donors, also known as Brnsted-Lowry acids.
Its chemical name is lysergic acid diethylamide, or LSD as it is more often known. Because it has a potent hallucinogenic impact, using it could alter how you see the world and its objects. The effects of LSD are referred to as tripping.
The term "acid" is frequently used to denote aqueous solutions of acids with a pH lower than 8, even though the technical meaning of the term only pertains to the solute.
To learn more about acid visit:
brainly.com/question/14072179
#SPJ4
The atomic mass of an element on the periodic table is the weight of 1 mole of atoms. For example, the atomic mass of Fe is 55.8 on the periodic table. If you weigh out 55.8 grams of Fe you will have 1 mole of iron, or 6.02 x 1023 atoms.
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
Your answer would be 250,000