Ca2+ would bond to any element in a 1 to 1 ratio that had an equal and opposite charge.
Neon is a noble gas, and doesn’t form bonds m
Carbon isn’t typically found in ion state, but if it did, it would likely by C4+
Flouring in ionic state is F1-, so you would need 2 flourines to cancel the 2+ charge of Calcium
Then the only option left would be Oxygen which, when in ion form is found be 2-
Potassium oxide: K₂O.
There's no need for prefixes since K₂O is an ionic compound.
<h3>Explanation</h3>
Find the two elements on a periodic table:
- Potassium- K- on the left end of period four.
- Oxygen- O- near the right end of periodic two.
Elements on the bottom-left corner of the periodic table are metals. Those on the top-right corner are nonmetals.
- Potassium is a metal,
- Oxygen is a nonmetal.
A metal and a nonmetal combine to form an ionic compound. Potassium oxide is likely to be an ionic compound. It contains two types of ions:
- Potassium ions: Potassium is group 1 of the periodic table. It is an alkaline metal. Like other alkaline metals such as sodium Na, potassium K tends to lose one electron and form ions of charge +1 in compounds. The ion would be K⁺.
- Oxide ions from oxygen: Oxygen is the second most electronegative element on the periodic table. It tends to gain two electrons and form the oxide ion
when it combines with metals.
The two types of ions carry opposite charges. They shall pair up at a certain ratio such that they balance the charge on each other. The charge on each
ion is twice that on a
ion. Each
would pair up with two
. Hence the subscript in the formula:
.
There are two classes of compounds:
- Covalent compounds, which need prefixes, and
- Ionic compounds, which need no prefix.
Prefixes are needed only in covalent compounds. For instance in the covalent compound carbon dioxide
, the prefix di- indicates that there are two oxygen atoms in the formula
. However, there's no need for prefix in ionic compounds such as
.
Out of the following given choice:
A. The increase in
the airspace occupied by vinegar molecules
B. The chemical reaction with nerves, which is slower than
other sensory processes
C. Attractive forces between the air and vinegar molecules
D. Random collisions between the air and vinegar molecules.
<span>The answer is
D. While the particles may be
moving at high velocities even at room
temperatures, the delay is due to the numerous collisions
between the vinegar molecules and the air molecules.This changes the vinegar’s
molecules directions from straight lines to random unpredictable paths</span>
Answer:
2HNO3+ Ba(OH)2 = Ba(NO3)2 + 2H2O
H3PO4 + Ca(OH)2 = Ca3(PO4)2 + 6H2O
Explanation:
2HNO3+ Ba(OH)2 = Ba(NO3)2 + 2H2O
H3PO4 + Ca(OH)2 = Ca3(PO4)2 + 6H2O
H+
O2-
OH-
Ba2+
Ca2+
NO3-
P 5+, 3+, 3-
H2O