Gross primary production and net primary production. Gross primary production is the amount of chemical energy as biomass that primary producers create in a given length of time.
Answer:
Increasing the temperature will cause chemical changes to occur faster. Decreasing the temperature, causes the particles to lose energy which causes them to move around less and slower. The less they move, the less collisions occur, and the less reactions occur between the chemicals = slower reaction rate.
Explanation:
Answer:
∆H > 0
∆Srxn <0
∆G >0
∆Suniverse <0
Explanation:
We are informed that the reaction is endothermic. An endothermic reaction is one in which energy is absorbed hence ∆H is positive at all temperatures.
Similarly, absorption of energy leads to a decrease in entropy of the reaction system. Hence the change in entropy of the reaction ∆Sreaction is negative at all temperatures.
The change in free energy for the reaction is positive at all temperatures since ∆S reaction is negative then from ∆G= ∆H - T∆S, we see that given the positive value of ∆H, ∆G must always return a positive value at all temperatures.
Since entropy of the surrounding= - ∆H/T, given that ∆H is positive, ∆S surrounding will be negative at all temperatures. This is so because an endothermic reaction causes the surrounding to cool down.
The answer I got was : 52.2