Answer:
d = 5.10 m
Explanation:
As we know that here on the plane of the inclined there is no frictional force
So in these cases we can say that total mechanical energy will always remains conserved
so here we can say that
spring potential energy = gravitational potential energy of the block
as we know from the formula

now plug in the values in it



now as we know that the angle of inclination is 60 degree and height raised is 4.42 m
so here maximum distance moved along the inclined plane will be



Answer:
45 N
Explanation:
F= ma (ie force is found by multiplying the mass of the object by its accerelation)
thus, F = 15 X 3 = 45 N
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
Energy source to detection to medium
Answer:
1) 
2) 
3) 

Explanation:
Given:
width of river, 
speed of stream with respect to the ground, 
speed of the swimmer with respect to water, 
<u>Now the resultant of the two velocities perpendicular to each other:</u>



<u>Now the angle of the resultant velocity form the vertical:</u>



- Now the distance swam by the swimmer in this direction be d.
so,



Now the distance swept downward:



2)
On swimming 37° upstream:
<u>The velocity component of stream cancelled by the swimmer:</u>



<u>Now the net effective speed of stream sweeping the swimmer:</u>



<u>The component of swimmer's velocity heading directly towards the opposite bank:</u>



<u>Now the angle of the resultant velocity of the swimmer from the normal to the stream</u>:



- Now let the distance swam in this direction be d'.



<u>Now the distance swept downstream:</u>



3)
Time taken in crossing the rive in case 1:



Time taken in crossing the rive in case 2:


