Answer:
1.23×10⁸ m
Explanation:
Acceleration due to gravity is:
a = GM / r²
where G is the universal gravitational constant,
M is the mass of the planet,
and r is the distance from the center of the planet to the object.
When the object is on the surface of the Earth, a = g and r = R.
g = GM / R²
When the object is at height i above the surface, a = 1/410 g and r = i + R.
1/410 g = GM / (i + R)²
Divide the first equation by the second:
g / (1/410 g) = (GM / R²) / (GM / (i + R)²)
410 = (i + R)² / R²
410 R² = (i + R)²
410 R² = i² + 2iR + R²
0 = i² + 2iR − 409R²
Solve with quadratic formula:
i = [ -2R ± √((2R)² − 4(1)(-409R²)) ] / 2(1)
i = [ -2R ± √(1640R²) ] / 2
i = (-2R ± 2R√410) / 2
i = -R ± R√410
i = (-1 ± √410) R
Since i > 0:
i = (-1 + √410) R
R = 6.37×10⁶ m:
i ≈ 1.23×10⁸ m
Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
Answer:
Part a)

Part B)

Explanation:
As we know that when both the forces are acting on the object in same direction then we will have

as we know that

m = 10.6 kg
now we will have


Now two forces are in opposite direction then we have


Part A)
Now we will have from above two equation

Part B)
Similarly for other force we have

Answer: NNOOOOOOOOOOOOOOOOOOONONONO
Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.
A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.
Answer:
50 meters
Explanation:
Let's start by converting to m/s. There are 3600 seconds in an hour and 1000 meters in a kilometer, meaning that 72km/h is 20m/s.

Since the car starts at rest, you can write the following equation:

Now that you have the acceleration, you can do this:

Once again, there is no initial velocity:

Hope this helps!