The product will not be affected by the addition of twice as much Na₂CO₃.
<h3>What is Limiting reagent in stoichiometry ?</h3>
- The maximum quantity of the end product determined by a balanced chemical equation is known as the Stoichiometry.
- The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be produced, and the one which remains unconsumed after the final reaction is in Excess.
- Calculate the moles of each reactant present and contrast it with the mole ratio of the reactants in the balanced equation to determine which reactant is the limiting one.
Here,taking the stoichiometry into consideration, we find that the reaction happens with 1:1 ratio; so, adding twice the amount of Na₂CO₃ will lead to its excess making the other the limiting reactant, hence, it would not affect the yield of the product.
To know more about the Limiting reactant, refer to:
brainly.com/question/14222359
#SPJ4
Answer:
The bulk of nuclear waste is in the form of <u>solid ceramic pellets</u>.
Explanation:
Nuclear fuel loaded into commercial reactors is generally in the form of solid ceramic pellets that are stacked into metal tubes and bundled together in fuel assemblies. After the atoms in the pellet split to release their energy, the pellets in tubes emerge as nuclear waste.
Pls, choose me as brainliest!
Answer:
The name of that compound is Nickel(||)iodide
Answer: The vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
As Kinetic energy is dependent on the absolute temperature of the gas.

where R = gas constant
T = temperature
On increase in temperature, the kinetic energy of the molecules increase and thus more liquid molecules can escape to form vapours and thus will exert more vapor pressure.
Thus the vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Answer:
11
So, 1 mole of sucrose contains 12 moles of carbon atoms, 22 moles of hydrogen atoms, and 11 moles of oxygen atoms.
Explanation:
Mark Brainliest