Answer:
Explanation:
The rotation rate of the man is:
The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
The final angular speed is:
Answer:
Work done = = 5 kJ
Explanation:
Given data:
volume of nitrogen
Polytropic exponent n = 1.4
putting all value
polytropic process is given as
work done
= 5 kJ
Answer:
W = 290.7 dynes*cm
Explanation:
d = 1/5 cm = 0.2 cm
The force is in function of the depth x:
F(x) = 1000 * (1 + 2*x)^2
We can expand that as:
F(x) = 1000 * (1 + 4*x + 4x^2)
F(x) = 1000 + 4000*x + 4000*x^2
Work is defined as
W = F * d
Since we have non constant force we integrate
W = [1000*x + 2000*x^2 + 1333*X^3] evaluated between 0 and 0.2
W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3
W = 200 + 80 + 10.7 = 290.7 dynes*cm
It looks blue as it is only reflecting blue light
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²