The volume of 15.7 M H2SO4 is required to prepare 12.0 L of 0.156 M sulfuric acid is 0.12 L
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Molarity of stock solution (M₁) = 15.7 M
- Volume of diluted solution (V₂) = 12 L
- Molarity of diluted solution (M₂) = 0.156 M
- Volume of stock solution needed (V₁) = ?
<h3>How to determine the volume of the stock solution needed</h3>
The volume of the stock solution needed can be obtained by using the dilution formula as shown below:
M₁V₁ = M₂V₂
15.7 × V₁ = 0.156 × 12
15.7 × V₁ = 1.872
Divide both side by 15.7
V₁ = 1.872 / 15.7
V₁ = 0.12 L
Thus, the volume of the stock solution needed to prepare the solution is 0.12 L
Learn more about dilution:
brainly.com/question/15022582
#SPJ1
Answer:
<em>Barometers measure this pressure. ... Changes in the atmosphere, including changes in air pressure, affect the weather. Meteorologists use barometers to predict short-term changes in the weather. A rapid drop in atmospheric pressure means that a low-pressure system is arriving.</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
Carbohydrate atoms usually have how hydrogen atoms as compared to oxygen atoms
1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.
75.2 grams....????? Maybe