Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
Answer:
Explanation:
Initial height from the ground = .41 m
Final height = 1m
Height by which Kelli was raised ( h )= .59 m
When she passes through the lowest point , she loses P E
= mgh
= 440 x .59
= 259.6 J
kinetic energy possessed by her
= 1/2 mv²
= .5 x (440/9.8) x 2²
= 89.8 J
Difference of energy is lost due to work by air friction
work done by friction = 89.8 - 259.6
= - 169.8 J
The answer is False. Simple machines are divided into three main categories, and not two. They are Levers, inclined planes and Pulleys. <span>These three simple machines all change force in such a way that it makes it easier for us to move an object. </span>
the answer is D cuz electricity is a conductive
I believe this would be an example of Mary's velocity. We have her speed and direction which is all you need to find velocity.