Answer:
0.75
Explanation:
Since the static frictional force is the maximum force applied just before sliding, our frictional force, F is 300 N.
Since F = μN where μ = coefficient of static friction and N = normal force = 400 N (which is the downward force applied against the surface).
So, μ = F/N
= 300 N/400 N
= 3/4
= 0.75
So, the coefficient of static friction μ = 0.75
Refer to the figure shown below.
g = 9.8 m/s², the acceleration due to gravity.
W = mg, the weight of the mug.
θ = 17°, the angle of the ramp.
Let μ = the coefficient of static friction.
The force acting down the ramp is
F = W sin θ = W sin(17°) = 0.2924W N
The normal reaction is
N = W cosθ = W cos(17°) = 0.9563W N
The resistive force due to friction is
R = μN = 0.9563μW N
For static equilibrium,
μN = F
0.9563μW =0.2924W
μ = 0.3058
The frictional force is F = μN = 0.2924W
The minimum value of μ required to prevent the mug from sliding satisfies
the condition
R > F
0.9563μW > 0.2924W
μ > 002924/.9563 = 0.306
Answer:
The frictional force is 0.2924mg, where m = the mass of the mug.
The minimum coefficient of static friction is 0.306
<span>it takes about about 37,200 years for light to travel 1 light year. So the answer would have to be false. It would take way longer than 300k years
</span>
The answer is: [C]: "elasticity" .
________________________________________