The basic relationship between frequency and wavelength for light (which is an electromagnetic wave) is

where c is the speed of light, f the frequency and

the wavelength of the wave.
Using

and

, we can find the value of the frequency:
During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0
Part a
Answer: NO
We need to calculate the distance traveled once the brakes are applied. Then we would compare the distance traveled and distance of the barrier.
Using the second equation of motion:

where s is the distance traveled, u is the initial velocity, t is the time taken and a is the acceleration.
It is given that, u=86.0 km/h=23.9 m/s, t=0.75 s, 

Since there is sufficient distance between position where car would stop and the barrier, the car would not hit it.
Part b
Answer: 29.6 m/s
The maximum distance that car can travel is 
The acceleration is same, 
The final velocity, v=0
Using the third equation of motion, we can find the maximum initial velocity for car to not hit the barrier:

Hence, the maximum speed at which car can travel and not hit the barrier is 29.6 m/s.