Answer:
0.8895m
Explanation:
Cable diameter = 0.0125m
Mass of elevator = 6450kg
Young Modulus(E) = 2.11*10¹¹N/m
∇l (change in length) =
L = 362m
A = Πr², but r = d / 2 = 0.0125 / 2 = 0.00625m
A = 3.142 * (0.00625)² = 1.227*10^-4m²
Young Modulus (E) = Tensile stress / Tensile strain
E = (F / A) / ∇l / L
F = mg = 6450 * 9.8 = 63210N
2.11*10¹¹ = (63210 / 1.22*10^-4) / (∇l / 362)
2.11*10¹¹ = 5.18*10⁸ / (∇l / 362)
2.11*10¹¹ = (5.18*10⁸ * 362) / ∇l
2.11*10¹¹ = 1.875*10¹¹ / ∇l
∇l = 1.875*10¹¹ / 2.11*10¹¹
∇l = 0.8895m
The change in length is 0.8895m
Answer: C. Some of uranium's mass is converted into energy, so the smaller atoms have less mass.
Explanation:
From Einstein's mass-energy relation:
E = mc²
Mass and energy are equivalent. Mass can be converted into energy and energy into mass.
When Uranium atoms under go nuclear fission, smaller atoms are formed and huge amount of energy is released. This energy comes from the mass difference of the uranium nuclei and new nuclei formed. This mass converted into energy according to Einstein's equation.
The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
The Kinetic energy of the stuntman is equal to the elastic potential energy of the spring.
<h3 /><h3>Velocity: </h3>
This is the ratio of displacement to time. The S.I unit of Velocity is m/s. The velocity of the stuntman can be calculated using the formula below.
⇒ Formula:
- mv²/2 = ke²/2
- mv² = ke².................. Equation 1
⇒ Where:
- m = mass of the stuntman
- v = velocity of the stuntman
- k = force constant of the spring
- e = compression of the spring
⇒ Make v the subject of the equation
- v = √(ke²/m)................. Equation 2
From the question,
⇒ Given:
- m = 48 kg
- k = 75 N/m
- e = 4 m
⇒ Substitute these values into equation 2
- v = √[(75×4²)/48]
- v = √25
- v = 5 m/s.
Hence, The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
Learn more about velocity here: brainly.com/question/10962624
Answer:
accelerate in the direction in which the electric field is pointing.
Explanation:
The positive charge feels a force in the same direction as the electric field
F=Eq
F and E are vectors, q is a scalar
(if it were a negative charge the force would be in the opposite direction)
that force will produce an acceleration in the same direction, that acceleration will cause the particle to move in the same direction, ie the direction of the electric field.