- Initial velocity (u) = 0 m/s [the car was at rest]
- Distance (s) = 80 m
- Time (t) = 10 s
- Let the magnitude of acceleration be a.
- By using the equation of motion,
we get,
<u>A</u><u>nswer:</u>
<u>The </u><u>magnitude</u><u> </u><u>of </u><u>its </u><u>acceleration</u><u> </u><u>is </u><u>1</u><u>.</u><u>6</u><u> </u><u>m/</u><u>s^</u><u>2</u><u>.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
Im thinking a and d but if its just one answer im thinking mostly a
It is salt water because they are two things combined together.