Angular momemtum : mass * tangential speed * distance to the center = 50*2.1*3.6=37800 J.s
Answer:
A. 16.9 m
Explanation:
I think this is the answer i am not sure
but hope it helps
For simplicity, let's call vector B-A vector C Then C is
Cx = (-6.1 - 2.2)
Cy = (-2.2 - (-6.9)) Or,
Cx = -8.3 Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:
where k is Coulomb's constant, and are the charges and d is the distance between the charges.
Working a little the equation, we can take:
And this equation will give us the distance between the charges. Taking the values of the problem
(the force has a minus sign, as its attractive)
And this is the distance between the charges.
Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.
Differentiate with respect to t on both the sides, we get
For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.