Answer:
Check the explanation
Explanation:
When we have an object in periodic motion, the amplitude will be the maximum displacement from equilibrium. Take for example, when there’s a back and forth movement of a pendulum through its equilibrium point (straight down), then swings to a highest distance away from the center. This distance will be represented as the amplitude, A. The full range of the pendulum has a magnitude of 2A.
position = amplitude x sine function(angular frequency x time + phase difference)
x = A sin(ωt + ϕ)
x = displacement (m)
A = amplitude (m)
ω = angular frequency (radians/s)
t = time (s)
ϕ = phase shift (radians)
Kindly check the attached image below to see the step by step explanation to the question above.
Answer:
The wagon will move to the right.
Explanation:
From the question given above, the following data were obtained:
Force applied to the left (Fₗ) = 10 N
Force applied to the right (Fᵣ) = 30 N
Direction of the wagon =.?
To determine the direction in which the wagon will move, we shall determine the net force acting on the wagon. This can be obtained as follow:
Force applied to the left (Fₗ) = 10 N
Force applied to the right (Fᵣ) = 30 N
Net force (Fₙ) =?
Fₙ = Fᵣ – Fₗ
Fₙ = 30 – 10
Fₙ = 20 N to the right
From the calculations made above, the net force acting on the wagon is 20 N to the right. Hence the wagon will move to the right.
Answer:
Explanation:
Distance between plates d = 2 x 10⁻³m
Potential diff applied = 5 x 10³ V
Electric field = Potential diff applied / d
= 5 x 10³ / 2 x 10⁻³
= 2.5 x 10⁶ V/m
This is less than breakdown strength for air 3.0×10⁶ V/m
b ) Let the plates be at a separation of d .so
5 x 10³ / d = 3.0×10⁶ ( break down voltage )
d = 5 x 10³ / 3.0×10⁶
= 1.67 x 10⁻³ m
= 1.67 mm.
Answer:potential difference is more or less like voltage. Using ohms, V=IR
Where V is Voltage
I is Current =0.4A
R is Resistance=20ohms
V=0.4*20
V=8V
Hence the potential difference will be 8V.
ii) V=0.4*30
V=12V
Explanation:
The voltage of potential difference is directly proportional to the current and the resistance. So if one increase or decrease, it will have impact on the other.
From the calculations, when the resistance increase, the voltage will increase to appreciate the change.
If you have no idea what the voltage is that you're about to measure,
then you should set the meter to the highest range before you connect
it to the two points in the circuit.
Analog meters indicate the measurement by moving a physical needle
across a physical card with physical numbers printed on it. If the unknown
voltage happens to be 100 times the full range to which the meter is set,
then the needle may find itself trying to move to a position that's 100 times
past the highest number on the meter's face. You'll hear a soft 'twang',
followed by a louder 'CLICK'. Then you'll wonder why the meter has no
needle on it, and then you'll walk over to the other side of the room and
pick up the needle off the floor, and then you'll probably put the needle
in your pocket. That will end your voltage measurements for that day,
and certainly for that meter.
Been there.
Done that.