
- Speed of the mobile = 250 m/s
- It starts decelerating at a rate of 3 m/s²
- Time travelled = 45s

- Velocity of mobile after 45 seconds

We can solve the above question using the three equations of motion which are:-
- v = u + at
- s = ut + 1/2 at²
- v² = u² + 2as
So, Here a is acceleration of the body, u is the initial velocity, v is the final velocity, t is the time taken and s is the displacement of the body.

We are provided with,
- u = 250 m/s
- a = -3 m/s²
- t = 45 s
By using 1st equation of motion,
⇛ v = u + at
⇛ v = 250 + (-3)45
⇛ v = 250 - 135 m/s
⇛ v = 115 m/s
✤ <u>Final</u><u> </u><u>velocity</u><u> </u><u>of</u><u> </u><u>mobile</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u>5</u><u> </u><u>m</u><u>/</u><u>s</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
B I think. Newtons first law talks about how if some thing is traveling at like 5 mph it’ll stay at 5 mph forever until the force is put on it.
Answer:
The structure of Germanium crystals will be destroyed at higher temperature. However, Silicon crystals are not easily damaged by excess heat. Peak Inverse Voltage ratings of Silicon diodes are greater than Germanium diodes. Si is less expensive due to the greater abundance of element.