Explanation:
In order to find out if the keys will reach John or not, we can use the formula of projectile motion to find the maximum height reached by the keys:
H = V²Sin²θ/2g
where,
V = Launch Speed = 18 m/s
θ = Launch Angle = 40°
g = 9.8 m/s²
Therefore,
H = (18 m/s)²[Sin 40°]²/(2)(9.8 m/s²)
H = 6.83 m
Hence, the maximum height that can be reached by the projectile or the keys is greater than the height of John's Balcony(5.33 m).
Therefore, the keys will make it back to John.
You must times the area by the volume, look at it as if the area is just one of 23 layers that makes up the volume.
1960x23=45080
so no it cannot be carried as it is 5080cm^3 over the limit
Answer:
the amount or number of a material or immaterial thing not usually estimated by spatial measurement
Answer:
The displacement is zero miles
Explanation:
The displacement of an object that moves from point A to point B is defined as

Where d is the displacement of the object. The displacement does not depend on the trajectory of the object. It only depends on the linear distance between the end point and the starting point.
In this case we know that the person walks from home to work and then walks from work to home. Therefore, the total displacement is the linear distance between the point where its journey begins and the point where the route ends.
The tour begins on the front porch of your house and ends on the front porch of your house (when you return from work). If we call A to the front porch of the house then the displacement is:

The displacement is zero miles, since the person finishes the journey just where it started (front porch)
Answer:
a) Transverse and longitudinal
Explanation:
Depending on the medium in which the sound is traveling the wave can be longitudinal or transverse.
When traveling in fluids i.e., in liquids and gases the wave takes the form of a longitudinal wave. Longitudinal waves cause compression and rarefaction of the fluid.
When traveling in solids the wave takes the form of a transverse wave. Transverse waves leads to the formation of shear stresses in the solid.