<h3>Concave or diverging lens is needed correct the vision of a nearsighted person whose far point is 30.0 cm</h3>
<em><u>Solution:</u></em>
Nearsighted person will not be able to see the distant objects clearly
Now, we want the near sighted person to see the distant objects clearly
<em><u>The lens equation is given as:</u></em>
![P = \frac{1}{d_o} + \frac{1}{d_i}](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7B1%7D%7Bd_o%7D%20%2B%20%5Cfrac%7B1%7D%7Bd_i%7D)
For distant vision, ![d_0 = \infty](https://tex.z-dn.net/?f=d_0%20%3D%20%5Cinfty)
![d_i = image\ distance\\\\d_0 = lens\ to\ retina\ distance](https://tex.z-dn.net/?f=d_i%20%3D%20image%5C%20distance%5C%5C%5C%5Cd_0%20%3D%20lens%5C%20to%5C%20retina%5C%20distance)
The image of 30 cm from eye will be 28.5 cm to left of spectacle lens
Therefore,
![d_i = -28.5\ cm = 0.285\ meter](https://tex.z-dn.net/?f=d_i%20%3D%20-28.5%5C%20cm%20%3D%200.285%5C%20meter)
From lens equation,
![P = \frac{1}{ \infty } + \frac{1}{-0.285\ meter}\\\\P = 0 - 3.51 \\\\P = -3.51\ diopter](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7B1%7D%7B%20%5Cinfty%20%7D%20%2B%20%5Cfrac%7B1%7D%7B-0.285%5C%20meter%7D%5C%5C%5C%5CP%20%3D%200%20-%203.51%20%5C%5C%5C%5CP%20%3D%20-3.51%5C%20diopter)
The negative power -3.51 D denotes that a concave or diverging lens is needed
Answer:
A single component that can’t be separated
brainliest please ;)
Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
Answer:
B is the answer. Correct me if I'm wrong