Answer: The sound will change due to changes in frequency and the wavelength of the airplane.
Explanation: Let assume that the observer is at a stationary position. The wavelength of the sound from the airplane reduces and the frequency increases as the plane is moving toward the observer. As the airplane passes by, that is, moving away from the observer, the frequency starts to reduce while the wavelength of the sound starts to increase.
The sound that the observer hears will change base on the illustration above.
The train is accelerating meaning there is a change in the velocity so the speed is either increasing or decreasing depending. The bicycle is travelling at a constant velocity meaning it is travelling at a constant speed.
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!