Larger gases produces more spectral lines than the smaller gases because they have more orbitals in their atoms.
Hydrogen has only one orbital in which an electron orbits. At the excited state, that is, when the electron gains energy, the number of energy level it can transcend is very few. For larger elements, they have more orbitals and when excited, they can move from the ground state to other energy levels at which they produce various unique spectral lines.
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.
Answer:
B?
Explanation:
In the example, the amount of hydrogen is 202,650 x 0.025 / 293.15 x 8.314472 = 2.078 moles. Use the mass of the hydrogen gas to calculate the gas moles directly; divide the hydrogen weight by its molar mass of 2 g/mole. For example, 250 grams (g) of the hydrogen gas corresponds to 250 g / 2 g/mole = 125 moles.
Answer:
below :)
Explanation:
Bones, droppings, and other dead matter
Energy storage molecules, cellular respiration
Process, energy
Oxygen, energy storage molecules, energy, carbon dioxide
Cellular respiration, carbon
Carbon, nitrogen
Nitrogen
Decomposers, ecosystem