Answer:
I would describe it as a amount of water that builds up and jumps up into the air and then splashes back down into the water like it was never there.
Explanation:
Non-explosive, so I wouldn't have to worry about is exploding at a random time and I would know I was safe.
<u>Answer:</u> The average rate of the reaction is 
<u>Explanation:</u>
To calculate the molarity of hydrogen gas generated, we use the equation:

Moles of hydrogen gas = 
Volume of solution = 250 mL = 0.250 L (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

Average rate of the reaction is defined as the ratio of concentration of hydrogen generated to the time taken.
To calculate the average rate of the reaction, we use the equation:

We are given:
Concentration of hydrogen generated = 0.1564 M
Time taken = 20.0 minutes
Putting values in above equation, we get:

Hence, the average rate of the reaction is 
True. Coastal regions are affected if it is warm currents over the ocean it make for a higher temperature over the land, if it's a colder current over the ocean it makes for temperatures to drop over land. This happens when the wind blows in from the sea.
Answer:
Check the electronic configuration of elements.
Explanation:
▪Valence electrons are the elwctrons present in the outermost shell of any element.
For example,
Electronic Configuration of Sodium = 2,8,1
Here , Sodium has 1 valence electrons.
▪Valency of an element is the total no. of electrons to be gained/losed in order to achieve duplet/octate state.
For example,
Electronic configuration of Sodium = 2,8,1
Sodium can achieve octate state either by losing 1 electron or gaining 7 electrons. But losing 1 electron is eay than gaining 7 electrons. So Valency of Sodium = +1
☆Metals have 1 or 2 or 3 valence electrons.
☆Non metals have 4 or 5 or 6 or 7 valence electrons.
☆Noble gases tend to stay in duplet/octate state i.e they have 2 or 8 valence electrons.