Answer:
The higher the amplitude, the higher the energy. To summarise, waves carry energy. The amount of energy they carry is related to their frequency and their amplitude. The higher the frequency, the more energy, and the higher the amplitude, the more energy.
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
<u>v₂ = 306.12 m/s</u>
Answer: 340.8W
Explanation: Please see the attachments below
Answer:
The final velocity of the object is,
= 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object,
= 0 m
The final displacement of the object,
= 0.75 m
The initial velocity of the object will be,
= o m/s
The final velocity of the object,
= ?
The average velocity of the object,
v = (
-
)/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is,
= 27 m/s
No, the speed at which an object falls is not equal to the acceleration at which it falls.
Answer:
Option B
Explanation:
Speed is defined as how fast an object can cover a specific distance and in what time it covers. So it is measured as the ratio of distance covered to the time taken to cover that distance. While acceleration is the rate of change of velocity. Moreover, speed is a scalar quantity and acceleration is a vector quantity. So most of the times, the direction will play an important role in the varying values of speed and acceleration. Also, acceleration of an object will depend upon the force and mass of the object. Thus, speed and acceleration will not attain same value always.