Answer:
330cm
Step-by-step explanation:
The formula to find the surface area of a rectangular prism is 2(lh+hw+lw)
(lh) in this formula is length times height
(hw) is height times width
(lw) is length times width
To find the answer to this problem lets make the height 3/5cm the width 10cm and the length 15cm
so now you would do (15*3/5) which is 9. This solve (lh)
then you would find (3/5*10) which is 6. This solves (hw)
and lastly you would find (15*10) which is 150. This solves (lw)
Now that you now the value of each one of these you replace it in the equation as so: 2(9+6+150)
now you solve the brackets which leaves us with 2(165)
now you multiply 2 with 165
and the answer is 330cm
Surface area = 330cm
Answer:
he bought 6 hats.
Step-by-step explanation:
im just gonna go through this 1 at a time. starting at 1.
12 + (14x9) = 138
(12x5)+(14x5) = 130
(12x4)+(14x6) = 132
(12x8)+(14x2) = 124
(12x6)+(14x4) = 128
<u>Answer</u><u> </u><u>:</u><u>-</u>
9(3+√3) feet
<u>Step </u><u>by</u><u> step</u><u> explanation</u><u> </u><u>:</u><u>-</u>
A triangle is given to us. In which one angle is 30° and length of one side is 18ft ( hypontenuse) .So here we can use trignometric Ratios to find values of rest sides. Let's lable the figure as ∆ABC .
Now here the other angle will be = (90°-30°)=60° .
<u>In ∆ABC , </u>
=> sin 30 ° = AB / AC
=> 1/2 = AB / 18ft
=> AB = 18ft/2
=> AB = 9ft .
<u>Again</u><u> </u><u>In</u><u> </u><u>∆</u><u> </u><u>ABC</u><u> </u><u>,</u><u> </u>
=> cos 30° = BC / AC
=> √3/2 = BC / 18ft
=> BC = 18 * √3/2 ft
=> BC = 9√3 ft .
Hence the perimeter will be equal to the sum of all sides = ( 18 + 9 + 9√3 ) ft = 27 + 9√3 ft = 9(3+√3) ft .
<h3>
<u>Hence </u><u>the</u><u> </u><u>perim</u><u>eter</u><u> of</u><u> the</u><u> </u><u>triangular</u><u> </u><u>pathway</u><u> </u><u>shown</u><u> </u><u>is</u><u> </u><u>9</u><u> </u><u>(</u><u> </u><u>3</u><u> </u><u>+</u><u> </u><u>√</u><u>3</u><u> </u><u>)</u><u> </u><u>ft</u><u> </u><u>.</u></h3>
Answer:
ŷ = 739.49X + 4876.43
y = 6755.98 - 388.24x + 125.30x²
y = 5428.98(1.09)^x
B.)
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1
Step-by-step explanation:
X :
1
2
3
4
5
6
7
8
Y:
6231
6574
7237
7211
7701
8581
10302
11796
Using the online linear regression calculator :
The linear trend :
ŷ = 739.49X + 4876.43
Where x = year
With 2006 representing 1 ; and so on
Slope = m = 739.49
Intercept (c) = 4876.43
y = predicted variable
The quadratic model:
General form:
y = A + Bx + Cx²
y = 6755.98 - 388.24x + 125.30x²
The exponential model:
y = AB^x
y = 5428.98(1.09)^x
B.) Next three years :
Year 2009 ; x = 9
Year 2010 ; x = 10
Year 2011 ; x = 11
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1