Answer:
Explanation:
At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume
ΔV = 9.2 - 5.6 = 3.6 L
3.6 L = 3.6 x 10⁻³ m³
ΔV = 3.6 x 10⁻³ m³
P = 3.7 x 10³ Pa
So work done
= 3.7 x 10³ x 3.6 x 10⁻³ J
= 13.32 J .
( c ) is the answer , because work is done by the gas so it will be positive.
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Which best describes the transition from gas to liquid?
gas is @ higher energy state than liq. so the transition must remove energy. so ans is a. Energy must be removed because particles in liquid move more slowly.