Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
Answer:
The angle of incident ray is 40°.
Explanation:
Given that the angle of incident and reflected ray are the same. In this question, we had given that both angles added up will gives you 80° so you have to divide it by 2 :
incident + reflected = 80°
Let incident = reflected = θ
θ + θ = 80°
2θ = 80°
θ = 80° ÷ 2
= 40°
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>
100% C . By size and distance
Correction
A student measures the mass <em><u>8cm3</u></em> block of brown sugar to be 12.9g. what is the density of the brown sugar
Answer:

Explanation:
Density is defined as mass per unit volume of an object expressed as
where
is the density, m is the mass of sugar and v is the volume of the sugar. Considering that the volume is given as 8cm3 for sugar then we substitute this for v and mass of 12.9 g we substitute for g then the density will be
