Answer:
The maximum height reached by the body is 313.6 m
The time to return to its point of projection is 8 s.
Explanation:
Given;
initial velocity of the body, u = 78.4 m/s
at maximum height (h) the final velocity of the body (v) = 0
The following equation is applied to determine the maximum height reached by the body;
v² = u² - 2gh
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (78.4²) / (2 x 9.8)
h = 313.6 m
The time to return to its point of projection is calculated as follows;
at maximum height, the final velocity becomes the initial velocity = 0
h = v + ¹/₂gt²
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g

Answer:v nxfgdjngdnmgndjfnncnfndngndsnbxzmnfn
Explanation:
Answer:
um ok
?????
i dont like you get rejected
jk u gud
Explanation:
Answer:radiation
Explanation:
radiation is the only one that makes sense
Answer:
a. 11.5kv/m
b.102nC/m^2
c.3.363pF
d. 77.3pC
Explanation:
Data given

to calculate the electric field, we use the equation below
V=Ed
where v=voltage, d= distance and E=electric field.
Hence we have

b.the expression for the charge density is expressed as
σ=ξE
where ξ is the permitivity of air with a value of 8.85*10^-12C^2/N.m^2
If we insert the values we have

c.
from the expression for the capacitance

if we substitute values we arrive at

d. To calculate the charge on each plate, we use the formula below
