Amount of moles of water is 4.36 mol
Explanation: M(C2H2) = 2·12.01 + 2·1.008 = 26.036 g/mol
Amount of substance is n= m/M= 56.8 g / 26.036 g/mol= 2.18159 mol
Water is needed 2·2.18 mol = 4.36 mol
Answer:
Humans have impacted the hydrosphere drastically and will only continue to due so based on population needs. Global climate change, water pollution, damming of rivers, wetland drainage, reduction in stream flow, and irrigation have all exerted pressure on the hydrosphere's existing freshwater systems.
Hope it helps :)
Reduction reactions are those reactions that reduce the oxidation number of a substance. Hence, the product side of the reaction must contain excess electrons. The opposite is true for oxidation reactions. When you want to determine the potential difference expressed in volts between the cathode and anode, the equation would be: E,reduction - E,oxidation.
To cancel out the electrons, the e- in the reactions must be in opposite sides. To do this, you reverse the equation with the negative E0, then replacing it with the opposite sign.
Pb(s) --> Pb2+ +2e- E0 = +0.13 V
Ag+ + e- ---> Ag E0 = +0.80 V
Adding up the E0's would yield an overall electric cell potential of +0.93 V.
<u>Answer: </u>The correct statement is X is the effective nuclear charge, and it increases across a period.
<u>Explanation:</u>
We are given that:
X = number of protons − number of core electrons
Effective nuclear charge is defined as the actual nuclear charge (Z = number of protons) minus the screening effect caused by the electrons present between nucleus and valence electrons. These electrons are the core electrons.
The formula used for the calculation of effective nuclear charge given by Slater is:

where,
= effective nuclear charge
Z = atomic number or actual nuclear charge or number of protons
= Screening constant
The effective nuclear charge increases as we go from left to right in a period because nuclear charge increases with no effective increase in screening constant.
Hence, the correct answer is X is the effective nuclear charge, and it increases across a period.