Answer: True. The three factors are as stated above
Answer:
1.09 M
Explanation:
Let's define the equation that will be used to calculate the final concentration of the resultant calcium nitrate solution. In order to calculate it, we need to find the total number of moles of calcium nitrate and divide by the total volume of the resultant solution:

This equation firstly helps us find the number of moles of calcium nitrate. Multiplying molarity by volume will yield the moles. Adding the moles from the first component to the second component will provide us with the total number of moles of calcium nitrate:

Now, the total volume of this solution can be found by adding the volume values of each component:

Finally, dividing the moles found by the total volume will yield the final molarity:

Answer:
B - What we change
Explanation:
Dependent Variable - What we measure
Control Variable - what stays the same
Conclusion - what we conclude
<em>Hope</em><em> </em><em>this</em><em> </em><em>can</em><em> </em><em>Help</em><em>!</em>
<em>:</em><em>D</em>
The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.
0.3268 moles of PC15 can be produced from 58.0 g of Cl₂ (and excess
P4)
<h3>How to calculate moles?</h3>
The balanced chemical equation is

The mass of clorine is m(
) = 58.0 g
The amount of clorine is n(
) = m(
)/M(
) = 58/70.906 = 0.817 mol
The stoichiometric reaction,shows that
10 moles of
yield 4 moles of
;
0.817 of
yield x moles of 
n(
) = 4*0.817/10 = 0.3268 mol
To know more about stoichiometric reaction, refer:
brainly.com/question/14935523
#SPJ9