Answer:
Explanation below:
Explanation:
Annual motion describes the changes in motion of the earth around the sun. Diurnal motion can be better understood as the change in motion caused by Earths rotation at the poles.
This might not be the answer you were looking for, your question is very vague.
Answer:
it is easier in zig zag because youll fell less tired and feel more energetic and it will will feel as if it were shorter to go zig zag
Answer:

Explanation:
Given that,
The frequency of local AM radio station, f = 696 KHz = 696000 Hz
We need to find the energy of the frequency at which it is broadcasting.
We know that,
Energy of a wave, E = hf
Where
h is Planck's constant
Put all the values,

So, the energy of the wave is equal to
.
Answer:
a) 
b) 
c) 
d) 
Explanation:
Average translation kinetic energy (
) is given as
....................(1)
where,
k = Boltzmann's constant ; 1.38 × 10⁻²³ J/K
T = Temperature in kelvin
a) at T = 27.8° C
or
T = 27.8 + 273 = 300.8 K
substituting the value of temperature in the equation (1)
we have

b) at T = 143° C
or
T = 143 + 273 = 416 K
substituting the value of temperature in the equation (1)
we have

c ) The translational kinetic energy per mole of an ideal gas is given as:

here
= Avagadro's number; ( 6.02×10²³ )
now at T = 27.8° C


d) now at T = 143° C


We are asked to solve and determine the magnitude of the current flowing through the first device. In order for us to have a better understanding of the problem, we can refer to the attached picture which contains electric circuit diagram. Since it the problem we are already given with an electromotive source or the voltage supply and since the two resistance is in parallel, it would clearly mean that the voltage drop in each resistance is just the same. The resistance 1 uses the 40 volts at the same time the resistance 2 uses 40 volts also. Solving further for the current, we can apply Ohm's law which V = IR where "V" represents the voltage, the "I" represents the current and "R" represents the resistance.
Such as the solution in obtaining current is shown below:
I = V / R, substitute values we have it
I = 40 volts / 1208 ohms
I = 0.0331 Amperes
Therefore, the current flowing in the first device is
0.033 Amperes or 33 milliAmperes.