1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
14

Which of the following information does the electromagnetic spectrum tell us?

Physics
2 answers:
Elodia [21]3 years ago
8 0
A: the wavelength of a wave
OLga [1]3 years ago
4 0
The answer is A your welcome !
You might be interested in
Physics students study a piano being pulled across a room on a rug. They know that when it is at rest, it experiences a gravitat
Vanyuwa [196]
The static frictional force is greater than the kinetic frictional force, so the static frictional force is greater than 1200 N.
5 0
3 years ago
Read 2 more answers
You walk with a velocity of 2 m/s north. You see a man approaching you, and from your frame of
solong [7]

Answer:

The velocity of the man from the frame of  reference of a stationary observer is, V₂ = 5 m/s

Explanation:

Given,

Your velocity, V₁ = 2 m/

The velocity of the person, V₂ =?

The velocity of the person relative to you, V₂₁ = 3 m/s

According to the relative velocity of two

                                V₂₁ = V₂ -V₁

∴                               V₂ =  V₂₁ + V₁

On substitution

                                 V₂ = 3 + 2

                                      = 5 m/s

Hence, the velocity of the man from the frame of reference of a stationary observe is, V₂ = 5 m/s

8 0
3 years ago
Using a 683 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide slit on a screen. You measure on the screen t
n200080 [17]

Answer:

10.2 m

Explanation:

The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

y=\frac{\lambda (m+\frac{1}{2})D}{d}

where

y is the position of the m-th minimum

m is the order of the minimum

D is the distance of the screen from the slit

d is the width of the slit

\lambda is the wavelength of the light used

In this problem we have:

\lambda=683 nm = 683\cdot 10^{-9} m is the wavelength of the light

d=1.1 mm = 0.0011 m is the width of the slit

m = 13 is the order of the minimum

y=8.57 cm = 0.0857 m is the distance of the 13th dark fringe from the central maximum

Solving for D, we find the distance of the screen from the slit:

D=\frac{yd}{\lambda(m+\frac{1}{2})}=\frac{(0.0857)(0.0011)}{(683\cdot 10^{-9})(13+\frac{1}{2})}=10.2 m

6 0
3 years ago
A man is standing on a weighing machine on a ship which is bobbing up and down with simple harmonic motion of period T=15.0s.Ass
STALIN [3.7K]

Well, first of all, one who is sufficiently educated to deal with solving
this exercise is also sufficiently well informed to know that a weighing
machine, or "scale", should not be calibrated in units of "kg" ... a unit
of mass, not force.  We know that the man's mass doesn't change,
and the spectre of a readout in kg that is oscillating is totally bogus.

If the mass of the man standing on the weighing machine is 60kg, then
on level, dry land on Earth, or on the deck of a ship in calm seas on Earth,
the weighing machine will display his weight as  588 newtons  or as 
132.3 pounds.  That's also the reading as the deck of the ship executes
simple harmonic motion, at the points where the vertical acceleration is zero.

If the deck of the ship is bobbing vertically in simple harmonic motion with
amplitude of M and period of 15 sec, then its vertical position is 

                                     y(t) = y₀ + M sin(2π t/15) .

The vertical speed of the deck is     y'(t) = M (2π/15) cos(2π t/15)

and its vertical acceleration is          y''(t) = - (2πM/15) (2π/15) sin(2π t/15)

                                                                = - (4 π² M / 15²)  sin(2π t/15)

                                                                = - 0.1755 M sin(2π t/15) .

There's the important number ... the  0.1755 M.
That's the peak acceleration.
From here, the problem is a piece-o-cake.

The net vertical force on the intrepid sailor ... the guy standing on the
bathroom scale out on the deck of the ship that's "bobbing" on the
high seas ... is (the force of gravity) + (the force causing him to 'bob'
harmonically with peak acceleration of  0.1755 x amplitude).

At the instant of peak acceleration, the weighing machine thinks that
the load upon it is a mass of  65kg, when in reality it's only  60kg.
The weight of 60kg = 588 newtons.
The weight of 65kg = 637 newtons.
The scale has to push on him with an extra (637 - 588) = 49 newtons
in order to accelerate him faster than gravity.

Now I'm going to wave my hands in the air a bit:

Apparent weight = (apparent mass) x (real acceleration of gravity)

(Apparent mass) = (65/60) = 1.08333 x real mass.

Apparent 'gravity' = 1.08333 x real acceleration of gravity.

The increase ... the 0.08333 ... is the 'extra' acceleration that's due to
the bobbing of the deck.

                        0.08333 G  =  0.1755 M

The 'M' is what we need to find.

Divide each side by  0.1755 :          M = (0.08333 / 0.1755) G

'G' = 9.0 m/s²
                                       M = (0.08333 / 0.1755) (9.8) =  4.65 meters .

That result fills me with an overwhelming sense of no-confidence.
But I'm in my office, supposedly working, so I must leave it to others
to analyze my work and point out its many flaws.
In any case, my conscience is clear ... I do feel that I've put in a good
5-points-worth of work on this problem, even if the answer is wrong .

8 0
3 years ago
Where is the most energy transferred in a food web?
Alla [95]

Answer:

is b and d hope id helpful

Explanation:

idk how to explain

6 0
3 years ago
Other questions:
  • A penny rolls along the table for a distance of 1.3 meters. Jackie pushes it 40 centimeters further in the same direction.
    13·1 answer
  • Physics questions please help me
    13·1 answer
  • What is a population?
    13·1 answer
  • Correctly round the following number to the whole number<br> 2.35784
    7·1 answer
  • Consider the following equilibrium at 979 K for the dissociation of molecular iodine into atoms of iodine. I2(g) equilibrium rea
    10·1 answer
  • A car is moving with a constant acceleration. At t = 5.0 s its velocity is 8.0 m/s and at t = 8.0 s its
    10·1 answer
  • I have a device that can generate sounds with frequencies between 800 Hz and 1600 Hz. I also have an unlabeled tuning fork that
    9·1 answer
  • Young's experiment is performed with light of wavelength 502 nm from excited helium atoms. Fringes are measured carefully on a s
    6·1 answer
  • Explain why water boiling in a container stops<br>boiling momentarily when the lid is removed​
    5·1 answer
  • Which elements are alkali metals and which are alkaline earth metals
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!