Answer:
C. The sum remains the same.
Explanation:
The sum of the kinetic and potential energy remains the same as the all rolls from point A to E.
We know this based on the law of conservation of energy that is in play within the system.
The law of conservation of energy states that "energy is neither created nor destroyed within a system but transformed from one form to another".
- At the top of the potential energy is maximum
- As the ball rolls down, the potential energy is converted to kinetic energy.
- Potential energy is due to the position of a body
- Kinetic energy is due to the the motion of the body
Answer:
Kepler's Third Law
T = 2 π r 3 G M E . T = 2 π r 3 G M E . For an ellipse, recall that the semi-major axis is one-half the sum of the perihelion and the aphelion. For a circular orbit, the semi-major axis (a) is the same as the radius for the orbit.
Answer:
ΔD = 2.29 10⁻⁵ m
Explanation:
This is a problem of thermal expansion, if the temperature changes are not very large we can use the relation
ΔA = 2α A ΔT
the area is
A = π r² = π D² / 4
we substitute
ΔA = 2α π D² ΔT/4
as they do not indicate the initial temperature, we assume that ΔT = 75ºC
α = 1.7 10⁻⁵ ºC⁻¹
we calculate
ΔA = 2 1.7 10⁻⁵ pi (1.8 10⁻²) ² 75/4
ΔA = 6.49 10⁻⁷ m²
by definition
ΔA = A_f- A₀
A_f = ΔA + A₀
A_f = 6.49 10⁻⁷ + π (1.8 10⁻²)² / 4
A_f = 6.49 10⁻⁷ + 2.544 10⁻⁴
A_f = 2,551 10⁻⁴ m²
the area is
A_f = π D_f² / 4
A_f =
D_f =
D_f = 1.80229 10⁻² m
the change in diameter is
ΔD = D_f - D₀
ΔD = (1.80229 - 1.8) 10⁻² m
ΔD = 0.00229 10⁻² m
ΔD = 2.29 10⁻⁵ m
Answer:
The volume at the surface is 10.97 L.
Explanation:
Given that,
Volume = 5.5 L
Height = 10 m
Density of sea water= 1025 kg/m³
We need to calculate the pressure at that point
Using formula of pressure

Put the value into the formula


We need to calculate the volume at the surface
Using equation of ideal gas

So, for both condition

Put the value into the formula


Hence, The volume at the surface is 10.97 L.