Answer: In this compound, phosphorous and oxygen act together as one charged particle, which is connected to magnesium, the other charged particle.
Explanation:
Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Titration experiments require the use of a burette. It is a long graduated glass tube held in place by a clamp stand. It has a tap fixture on the end that regulates the delivery of small volumes of liquid into a beaker in the titration process. Bunsen burners are used to heat substances and crucibles are used to hold items to be heated to high temperatures.
The answer is in the picture which is given below:
Explanation:
Uranium-238 undergoes a radioactive decay series consisting of 14 separate steps before producing stable lead-206. This series consists of eight α decays and six β decays.