1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
5

Why data structure is important

Engineering
1 answer:
Readme [11.4K]3 years ago
8 0

Answer:

Data structures are important as it allows the user to insert, update, arrange, rearrange, delete, and retrieve data in an efficient manner, from the database. And to accomplish the said tasks algorithms are used. It is used to manipulate the stored data within the database in the required manner. …

Explanation:

hope you like my ans

You might be interested in
My t!t$ feel sore and heavyy
den301095 [7]

Answer:

wowwwwwwwwwww have a nice dayyyyy

5 0
3 years ago
Which of the following is NOT one of the 3 technology bets we have made?
agasfer [191]

The one that is not an option of the 3 technology bets made are  Digital core and Design Thinking.

<h3>What are the 3 technology bets Genpact produced?</h3>

The digital technologies made are known to be able to create value through the accelerating processes and also by automating them.

The technology bets Genpact are:

  • Artificial Intelligence.
  • Augmented Intelligence.
  • Customer Experience.
  • Digital Transformation and AI Consulting.
  • Intelligent Automation.

Learn more about technology from

brainly.com/question/25110079

8 0
2 years ago
A two-phase mixture of water and steam with a quality of 0.63 and T = 300F expands isothermally until only saturated vapor rema
VMariaS [17]

Answer:

Explanation:

Hello!

To solve this problem you must follow the following steps, which are fully registered in the attached image.

1. Draw the complete outline of the problem.

2. Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)

through prior knowledge of two other properties.

3. Use temodynamic tables to find the density of water in state 1, by means of temperature and quality, with this value and volume we can find the mass.

3. Use thermodynamic tables to find the internal energy in state 1 and two using temperature and quality.

4. uses the first law of thermodynamics that states that the energy in a system is always conserved, replaces the previously found values ​​and finds the work done.

5. draw the pV diagram using the 300F isothermal line

5 0
3 years ago
A rigid bar pendulum is attached to a cart, which moves along the horizontal plane. The rigid bar has a center of mass at L/2. T
Vikentia [17]

Answer:

See the attached picture for answer.

Explanation:

See the attached picture for explanation.

4 0
3 years ago
Air flows through a rectangular section Venturi channel . The width of the channel is 0.06 m; The height at the inlet (1) and ou
nataly862011 [7]

Answer:

a) Q = 1.3044 m^3 / s

b) h2 = 0.37 m

c) Pi = Pe = Patm = 101.325 KPa

Explanation:

Given:-

- The constant width of the rectangular channel, b = 0.06 m

- The density of air, ρa = 1.23 kg/m^3

- The density of water, ρw = 1000 kg / m^3

- The height of the channel at inlet and exit, hi = he = 0.04 m

- The height of the channel at point 2 = h2

- The height of the channel at point 3 - Throat , ht = 0.02 m

- The change height of the water in barometer at throat, ΔHt = 0.1 m

- The change height of the water in barometer at point 2, ΔH2 = 0.05 m  

- The flow rate = Q

Solution:-

- The flow rate ( Q ) of air through the venturi remains constant because the air is assumed to be incompressible i.e ( constant density ). We have steady state conditions for the flow of air.

- So from continuity equation of mass flow rate of air we have:

                         m ( flow ) = ρa*An*Vn = Constant

Where,

             Ai : The area of the channel at nth point

             Vi : The velocity of air at nth point.

- Since, the density of air remains constant throughout then we can say that flow rate ( Q ) remains constant as per continuity equation:

                        Q = m ( flow ) / ρa

Hence,

                        Q = Ai*Vi = A2*V2 = At*Vt = Ae*Ve

- We know that free jet conditions apply at the exit i.e the exit air is exposed to atmospheric pressure P_atm.

- We will apply the bernoulli's principle between the points of throat and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = Pe + 0.5*ρa*Ve^2

- To determine the gauge pressure at the throat area ( Pt ) we can make use of the barometer principle.

- There is an atmospheric pressure acting on the water contained in the barometric tube ( throat area ). We see there is a rise of water by ( ΔHt ).

- The rise in water occurs due to the pressure difference i.e the pressure inside the tube ( Pt ) and the pressure acting on the water free surface i.e ( Patm ).

- The change in static pressure leads to a change in head of the fluid.

Therefore from Barometer principle, we have:

              Patm - Pt-abs = pw*g*ΔHt

              101,325 - Pt-abs = 1000*9.81*0.1

              Pt-abs = 101,325 - 981

              Pt-abs = 100,344 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             Pt = Pt-abs - Patm

             Pt = 100,344 - 101,325

             Pt = -981 Pa  ... Gauge pressure  

- Now we will use the continuity equation for points of throat area and exit.

            At*Vt = Ae*Ve

            b*ht*Vt = b*he*Ve

            Ve = ( ht / he ) * Vt

            Ve = ( 0.02 / 0.04 ) * Vt

            Ve = 0.5*Vt

           

- Now substitute the pressure at throat area ( Pt ) and the exit velocity ( Ve ) into the bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = 0 + 0.5*ρa*( 0.5*Vt )^2

            -981  = 0.5*ρa*( 0.25*Vt^2 - Vt^2 )

            -981 = - 0.1875*ρa*Vt^2

            Vt^2 = 981 / ( 0.1875*1.23 )

            Vt = √4253.65853

            Vt = 65.22 m/s

- The flow rate ( Q ) of air in the venturi is as follows:

            Q = At*Vt

            Q = ( 0.02 )*( 65.22 )

            Q = 1.3044 m^3 / s   ..... Answer part a

- We will apply the bernoulli's principle between the points of throat and point 2.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*V2^2

- To determine the gauge pressure at point 2 ( P2 ) we can make use of the barometer principle.

Therefore from Barometer principle, we have:

              Patm - P2-abs = pw*g*ΔH2

              101,325 - P2-abs = 1000*9.81*0.05

              P2-abs = 101,325 - 490.5

              Pt-abs = 100834.5 Pa ..... Absolute pressure

- We will convert the absolute pressure into gauge pressure by the following relation:

             P2 = P2-abs - Patm

             Pt = 100,344 - 100834.5

             Pt = -490.5 Pa  ... Gauge pressure            

- Now substitute the pressure at point 2 ( P2 )  bernoulli's equation expressed before:

            Pt + 0.5*ρa*Vt^2 = P2 + 0.5*ρa*( V2 )^2

            ( Pt - P2 ) + 0.5*ρa*Vt^2 = 0.5*ρa*( V2 )^2

            2*( Pt - P2 ) / ρa + Vt^2 = V2^2

            2*( -981 + 490.5 ) / 1.23 + 65.22^2 = V2^2

            -981/1.23 + 4253.6484 = V2^2

            V2 = √3456.08742

            V2 = 58.79 m/s

- The flow rate ( Q ) of air in the venturi remains constant is as follows:

            Q = A2*V2

            Q = b*h2*V2

            h2 = Q / b*V2  

            h2 = 1.3044 / ( 0.06*58.79)

            h2 = 0.37 m      ..... Answer part b

- We will apply the bernoulli's principle between the points of inlet and exit.

Assuming no changes in elevation between two points and the effect of friction forces on the fluid ( air ) are negligible.

                       Pi + 0.5*ρa*Vi^2 = Pe + 0.5*ρa*Ve^2

- Now we will use the continuity equation for points of inlet area and exit.

            Ai*Vi = Ae*Ve

            b*hi*Vi = b*he*Ve

            Vi = ( he / hi ) * Ve

            Vi = ( 0.04 / 0.04 ) * 0.5*Vt

            Vi = Ve = 0.5*Vt = 0.5*65.22 = 32.61 m/s

- Now substitute the velocity at inlet in bernoulli's equation expressed before:

            Pi + 0.5*ρa*Vi^2 = 0 + 0.5*ρa*( Ve )^2

           

Since, Vi = Ve then:

           Pi = Pe = 0 ( gauge pressure ).

           Pi = Pe = Patm = 101.325 KPa

Comment: If the viscous effects are considered then the Pressure at the inlet must be higher than the exit pressure to do work against the viscous forces to drive the fluid through the venturi assuming the conditions at every other point remains same.

8 0
3 years ago
Other questions:
  • When a mesh in a circuit contains an independent or dependent current source, this leads to a special case of mesh-current analy
    14·1 answer
  • Consider a cylindrical specimen of some hypothetical metal alloy that has a diameter of 11.0 mm. A tensile force of 1550 N produ
    7·1 answer
  • Answer every question of this quiz
    7·1 answer
  • At the grocery store you place a pumpkin with a mass of 12.5 lb on the produce spring scale. The spring in the scale operates su
    5·1 answer
  • The amount of time an activity can be delayed and yet not delay the project is termed:_________
    14·1 answer
  • 4 main causes of erosion
    12·1 answer
  • Which of these are an ethical issue
    14·1 answer
  • PLLLLLEEESSSEEE IIII NEED ASAP
    12·2 answers
  • A countinous shot that sense, flows well, and is understanable and pleasant to look at
    13·1 answer
  • True or false for the 4 questions?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!