Observations and Data are FACTS. Scientists use observations and data to draw a conclusion. Observations lead to the recording of data. Scientists ask questions about their observations and then collect data to answer their questions, then they have their evidence. Opinions are not facts, they are simply beliefs or value judgements. Then the scientist should repeat the experiment the results from different scientists should be similar- if the results are not similar and consistent then the experiment must be done again.
<span>
</span>
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N
Answer:
40 m/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 60 m/s
Height (h) = 100 m
Acceleration due to gravity (g) = 10 m/s²
Final velocity (v) =?
The velocity at height 100 m can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
v² = 60² – (2 × 10 × 100)
v² = 3600 – 2000
v² = 1600
Take the square root of both side
v = √1600
v = 40 m/s
Thus, velocity at height 100 m is 40 m/s
Answer:
a.) 490m
b.) 98m/s
Explanation:
Given that the
Acceleration g = 9.8 m/s^2
Time = 10s
Since the parachutist jumps out of an aeroplane. The parachutist jumped out from rest. Initial velocity U is therefore equal to zero. That is,
U = 0
Distance covered = height H
The height can be calculated by using second equation of motion
H = Ut + 1/2gt^2
Substitute g and t into the formula
H = 1/2 × 9.8 × 10^2
H = 490 m
Therefore, she travels as far as 490 m
b.) Her final velocity can be calculated by using third equation of motion
V^2 = U^2 + 2gH
Substitute g and H into the formula.
Remember that U = 0
V^2 = 2 × 9.8 × 490
V^2 = 9604
V = sqrt (9604)
V = 98 m/s
Therefore, her final velocity is 98 m/s
I believe it’d have a higher resistance because if it had a lower resistance more electrons could travel threw it